gr.normalize: A function for normalization

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

gr.normalize normalizes a matrix of gene expression data as part of the implementation of the Gene Recommender algorithm described in Owen et al (2003). gr.normalize must be applied to the data before running gr.main.

Usage

1
gr.normalize(unnormalized.dataset)

Arguments

unnormalized.dataset

A matrix or ExpressionSet containing the normalized gene expression data. The rows correspond to genes, the columns correspond to experiments, and the entries correspond to the gene expression levels. The rows must be labeled.

Details

gr.normalize normalizes the data so that for each gene, the gene expression measurements are distributed uniformly between -1 and 1.

Value

The normalized gene expression data, in the same format as the input.

Author(s)

Gregory J. Hather ghather@stat.berkeley.edu
with contributions from from Art B. Owen art@stat.stanford.edu
and Terence P. Speed terry@stat.berkeley.edu.

References

Art B. Owen, Josh Stuart, Kathy Mach, Anne M. Villeneuve, and Stuart Kim. A Gene Recommender Algorithm to Identify Coexpressed Genes in C. elegans. Genome Research 13:1828-1837, 2003.

See Also

gr.main, gr.cv

Examples

1
2
3
4
#This example uses the geneData dataset from the Biobase package
data(geneData)
my.query <- c("31730_at", "31331_at", "31712_at", "31441_at")
normalized.data <- gr.normalize(geneData)

geneRecommender documentation built on Nov. 8, 2020, 5:01 p.m.