Description Usage Arguments Details Value Author(s) References See Also Examples
We encourage users calling "image" rather than "maImage". The name of the arguments are change slightly.
The function maImage
creates spatial images of shades of gray or colors that correspond to the values of a statistic for each spot on the array. The statistic can be the intensity log-ratio M, a spot quality measure (e.g. spot size or shape), or a test statistic. This function can be used to explore whether there are any spatial effects in the data, for example, print-tip or cover-slip effects.
1 2 |
m |
Microarray object of class |
x |
Name of accessor function for the spot statistic of interest, typically a slot name for the microarray object |
subset |
A "logical" or "numeric" vector indicating the subset of spots to display on the image. |
col |
List of colors such as that generated by rainbow, heat.colors, topo.colors, terrain.colors, or similar functions. In addition to these color palette functions, a new function |
contours |
If |
bar |
If |
overlay |
A logical vector of spots to be highlighted on the image plots. |
ol.col |
Color of the overlay spots. |
colorinfo |
A logical value indicating whether the function should return the color scale information. |
... |
Optional graphical parameters, see |
This function calls the general function maImage.func
, which is not specific to microarray data. If there are more than one array in the batch, the plot is done for the first array, by default. Default color palettes were set for different types of spot statistics using the maPalette
function. When x=c("maM", "maMloc", "maMscale")
, a green-to-red color palette is used. When x=c("maGb", "maGf", "maLG")
, a white-to-green color palette is used. When x=c("maRb", "maRf", "maLR")
, a white-to-red color palette is used. The user has the option to overwrite these parameters at any point.
If colorinfo
is set to TRUE, the following list with elements will be returned.
x.col |
vector of colors to be used for calibration color bar. |
x.bar |
vector of values to be used for calibration color bar. |
summary |
six number summary of the spot statistics, from the function |
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine.
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software, Springer, New York.
image
, maImage.func
, maColorBar
, maPalette
, summary
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # To see the demo type demo(marrayPlots)
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Microarray color palettes
Gcol <- maPalette(low = "white", high = "green", k = 50)
Rcol <- maPalette(low = "white", high = "red", k = 50)
RGcol <- maPalette(low = "green", high = "red", k = 50)
# Color images of green and red background and foreground intensities
maImage(swirl[, 3], x="maGb")
maImage(swirl[, 3], x = "maGf", subset = TRUE, col = Gcol, contours = FALSE, bar = TRUE, main="Swirl array 93")
maImage(swirl[, 3], x = "maRb", contour=TRUE)
maImage(swirl[, 3], x = "maRf", bar=FALSE)
# Color images of pre-normalization intensity log-ratios
maImage(swirl[, 1])
maImage(swirl[, 3], x = "maM", subset = maTop(maM(swirl[, 3]), h = 0.1, l = 0.1), col = RGcol, contours = FALSE, bar = TRUE, main = "Swirl array 93: image of pre-normalization M for % 10 tails")
# Color image of print-tip-group
maImage(swirl[, 1],x="maPrintTip")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.