ggplot_spaghetti: Spaghetti Plots using 'ggplot2'

Description Usage Arguments Details Value Examples

View source: R/ggplot.spaghetti.R

Description

This function allows the user to create spaghetti plots for individuals with time varying covariates. You can also break this down into subgroups to analyze different trentds.

Usage

1
2
3
4
5
6
7
8
9
ggplot_spaghetti(
  y,
  id,
  time,
  alpha = 0.2,
  method = "loess",
  jit = 0,
  group = NULL
)

Arguments

y

This is the y-axis parameter to specify. Generally it is a continuous variable.

id

This is the id parameter that identifies the unique individuals or units.

time

This is the time vector and must be numeric.

alpha

Scalar value between [0,1] that specifies the transparencey of the lineplots.

method

Character value that specifies which type of method to use for fitting. Optional methods come from geom_smooth function.

jit

Scalar value that specifies how much you want to jitter each individual observation. Useful if many of the values share the same y values at a time point.

group

Specifies a grouping variable to be used, and will plot it by color on one single plot.

Details

Note that the data must be in long format.

Value

Plots a time series data by each individual/unit with group trends overlayed.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
library(ggplot2)
num_subjects_per_group <- 15
sim_obj <- mvrnorm_sim(n_control=num_subjects_per_group,
                       n_treat=num_subjects_per_group,
                       control_mean=5, sigma=1, num_timepoints=5,
                       t_interval = c(0, 4),
                       rho=0.95, corr_str='ar1', func_form='linear',
                       beta=c(0, 0.25),
                       missing_pct=0.6, missing_per_subject=2)

with(sim_obj$df, suppressWarnings(ggplot_spaghetti(y=Y_obs, id=ID, time=time,
                                                  jit=0.1, group=group)))+
  labs(title="Simulated Microbiome Data from Multivariate Normal",
       y="Normalized Reads", x="Time") +
  scale_linetype_manual(values=c("solid","dashed"), name="Group") +
  scale_color_manual(values=c("#F8766D", "#00BFC4"), name="Group")

microbiomeDASim documentation built on Nov. 8, 2020, 10:58 p.m.