nem.bootstrap: Bootstrapping for nested effect models

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/nem.bootstrap.R

Description

Performs bootstrapping (resampling with replacement) on effect reporters to assess the statistical stability of networks

Usage

1
2
3
4
nem.bootstrap(D, thresh=0.5, nboot=1000,inference="nem.greedy",models=NULL,control=set.default.parameters(unique(colnames(D))), verbose=TRUE)

## S3 method for class 'nem.bootstrap'
print(x, ...)

Arguments

D

data matrix with experiments in the columns (binary or continous)

thresh

only edges appearing with a higher frequency than "thresh" are returned

nboot

number of bootstrap samples desired

inference

search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alternating MAP optimization using log odds or log p-value densities

models

a list of adjacency matrices for model search. If NULL, an exhaustive enumeration of all possible models is performed.

control

list of parameters: see set.default.parameters

verbose

do you want to see progression statements? Default: TRUE

x

nem object

...

other arguments to pass

Details

Calls nem or nemModelSelection internally, depending on whether or not lambda is a vector and Pm != NULL. For DEPNs a stratified bootstrap is carried out, where strate are defined on each replicate group for each time point.

Value

nem object with edge weights being the bootstrap probabilities

Author(s)

Holger Froehlich

See Also

nem.jackknife, nem.consensus, nem.calcSignificance, nem

Examples

1
2
3
4
5
6
## Not run: 
   data("BoutrosRNAi2002")
   D <- BoutrosRNAiDiscrete[,9:16]
   nem.bootstrap(D, control=set.default.parameters(unique(colnames(D)), para=c(0.13,0.05)))         

## End(Not run)

nem documentation built on Oct. 31, 2019, 2:12 a.m.