fastBMAcontrol: Control parameters for 'networkBMA' when using fastBMA...

Description Usage Arguments Value References See Also Examples

View source: R/fastBMAcontrol.R

Description

Assigns default control parameters for networkBMA when using fastBMA algorithm, and allows setting control parameter values.

Usage

1
2
3
4
5
fastBMAcontrol(OR = 10000, timeSeries = TRUE, rankOnly = FALSE, noPrune = FALSE,
               edgeMin = 0.5, edgeTol = -1, nThreads = 1,
			   selfie = FALSE, showPrune = FALSE, nVars = 0,
			   fastgCtrl = fastgControl(), start = -1,
			   end = -1, pruneFilterMin = 0, timeout = 0) 

Arguments

OR

A number specifying the maximum ratio for excluding models in Occam's window.

timeSeries

A logical value indicating whether the input the input data set is a time series data or static data.

rankOnly

A logical value indicating use priors to rank variables but uniform prior otherwise

noPrune

A logical value indicating whether not applying transitive reduction on the output edges or not

edgeMin

Threshold for the posterior probability to be shown

edgeTol

the error tolerance for determining whether an indirect path is as good as a direct path

nThreads

The number of threads used in the parallel computing of fastBMA

selfie

A logical value indicating whether showing self-loop edges or not

showPrune

A logical value indicating whether showing removed edges in transitive reduction or not. Ignored if noPrune is TRUE

nVars

the number of variables analyzed

fastgCtrl

A list of control variables affecting fastBMA computations when using Zellner's g-prior in model likelihhod evaluation. A function called fastgCtrl is provided to facilitate this setting, and the default is fastgCtrl().

start

start point of eval subset.

end

end point of eval subset.

pruneFilterMin

minimum posterior prob (0-1) before an edge will be included in the network to be pruned.

timeout

maximum number of seconds for the regression before it stops the search. 0 if not apply.

Value

A list of values for the named control parameters to be passed to fastBMA.

References

K. Lo, A. E. Raftery, K. M. Dombek, J. Zhu, E. E. Schadt, R. E. Bumgarner and K. Y. Yeung (2011), Integrating External Biological Knowledge in the Construction of Regulatory Networks from Time-series Expression Data, unpublished manuscript, University of Washington.

K. Y. Yeung, K. M. Dombek, K. Lo, J. E. Mittler, J. Zhu, E. E. Schadt, R. E. Bumgarner and A. E. Raftery (2011), Construction of regulatory networks using expression time-series data of a genotyped population, Proceedings of the National Academy of Sciences, 108(48):19436-41.

K. Y. Yeung, R. E. Bumgarner and A. E. Raftery (2005). Bayesian Model Averaging: Development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics 21:2394-2402.

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky (1999). Bayesian Model Averaging: a tutorial, Statistical Science 14(4): 382-417.

L. H. Hong, M. Wu1, A. Lee, W. C. Young, A. E. Raftery and K. Y. Yeung, FastBMA and Transitive Reduction for Gene Network Inference. [in preparation]

See Also

fastgControl, networkBMA

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
data(dream4)

network <- 1

nTimePoints <- length(unique(dream4ts10[[network]]$time))

edges1ts10 <- networkBMA(data = dream4ts10[[network]][,-(1:2)],
                        nTimePoints = nTimePoints,
						 control=fastBMAcontrol(fastgCtrl=
						 fastgControl(optimize=4)))

networkBMA documentation built on Jan. 28, 2021, 2:02 a.m.