Description Usage Arguments Value References See Also Examples
View source: R/fastBMAcontrol.R
Assigns default control parameters for the use of Zellner's g-prior in
fastBMA algorithm in networkBMA
, and allows setting control parameter values.
1 | fastgControl( optimize = 0, g0 = NULL, iterlim = 20 )
|
optimize |
optimize bits - an int value determines how accurate the optimization of g is. 0 means not optimize. |
g0 |
An initial value of g to use if optimize is TRUE, or the fixed value to use without optimization. |
iterlim |
If optimize is non-zero, the maximum number of iterations of the optimization algorithm to use. Ignored otherwise. |
A list of values for the named control parameters to be passed
to fastBMAcontrol
and networkBMA
using fastBMA algorithm.
A. Zellner (1986), On assessing prior distributions and Bayesian regression analysis with g-prior distributions, Bayesian inference and decision techniques: Essays in Honor of Bruno De Finetti, 6:233-243.
M. Clyde and E.I. George (2004), Model Uncertainty, Statistical Science, 81-94.
L. H. Hong, M. Wu1, A. Lee, W. C. Young, A. E. Raftery and K. Y. Yeung, FastBMA and Transitive Reduction for Gene Network Inference. [in preparation]
1 2 3 4 5 6 7 8 9 10 | data(dream4)
network <- 1
nTimePoints <- length(unique(dream4ts10[[network]]$time))
edges1ts10 <- networkBMA(data = dream4ts10[[network]][,-(1:2)],
nTimePoints = nTimePoints,
control=fastBMAcontrol(fastgCtrl=
fastgControl(optimize=4)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.