Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE,
cache = FALSE,
comment = "#>")
## ---- message = FALSE---------------------------------------------------------
library(parallel)
library(tidyverse)
library(pathwayPCA)
## ----read_gmt-----------------------------------------------------------------
gmt_path <- system.file("extdata", "c2.cp.v6.0.symbols.gmt",
package = "pathwayPCA", mustWork = TRUE)
cp_pathwayCollection <- read_gmt(gmt_path, description = FALSE)
cp_pathwayCollection
## ----read_assay---------------------------------------------------------------
assay_path <- system.file("extdata", "ex_assay_subset.csv",
package = "pathwayPCA", mustWork = TRUE)
assay_df <- read_csv(assay_path)
## ----TransposeAssay-----------------------------------------------------------
assayT_df <- TransposeAssay(assay_df)
assayT_df
## ----read_pinfo---------------------------------------------------------------
pInfo_path <- system.file("extdata", "ex_pInfo_subset.csv",
package = "pathwayPCA", mustWork = TRUE)
pInfo_df <- read_csv(pInfo_path)
pInfo_df
## ----innerJoin----------------------------------------------------------------
exSurv_df <- inner_join(pInfo_df, assayT_df, by = "Sample")
exSurv_df
## ----create_OmicsSurv_object--------------------------------------------------
data("colonSurv_df")
data("colon_pathwayCollection")
colon_OmicsSurv <- CreateOmics(
assayData_df = colonSurv_df[, -(2:3)],
pathwayCollection_ls = colon_pathwayCollection,
response = colonSurv_df[, 1:3],
respType = "survival"
)
## ----view_Omics---------------------------------------------------------------
colon_OmicsSurv
## ----accessor1----------------------------------------------------------------
getAssay(colon_OmicsSurv)
## ----accessor2----------------------------------------------------------------
getPathwayCollection(colon_OmicsSurv)
## ----accessor3----------------------------------------------------------------
getEventTime(colon_OmicsSurv)[1:10]
## ----accessor4----------------------------------------------------------------
getEvent(colon_OmicsSurv)[1:10]
## ----aespca-------------------------------------------------------------------
colon_aespcOut <- AESPCA_pVals(
object = colon_OmicsSurv,
numReps = 0,
numPCs = 2,
parallel = TRUE,
numCores = 2,
adjustpValues = TRUE,
adjustment = "BH"
)
## ----superpca-----------------------------------------------------------------
colon_superpcOut <- SuperPCA_pVals(
object = colon_OmicsSurv,
numPCs = 2,
parallel = TRUE,
numCores = 2,
adjustpValues = TRUE,
adjustment = "BH"
)
## ----viewPathwayRanks---------------------------------------------------------
getPathpVals(colon_superpcOut)
## ----tidyOutput---------------------------------------------------------------
colonOutGather_df <-
getPathpVals(colon_superpcOut) %>%
gather(variable, value, -terms) %>%
mutate(score = -log(value)) %>%
mutate(variable = factor(variable)) %>%
mutate(variable = recode_factor(variable,
rawp = "None",
FDR_BH = "FDR"))
graphMax <- ceiling(max(colonOutGather_df$score))
colonOutGather_df
## ----surv_spr_pval_plot, fig.height = 6, fig.width = 10.7, out.width = "100%", out.height = "60%"----
raw_df <- colonOutGather_df %>%
filter(variable == "None") %>%
select(-variable, -value)
ggplot(raw_df) +
theme_bw() +
aes(x = reorder(terms, score), y = score) +
geom_bar(stat = "identity", position = "dodge", fill = "#005030") +
scale_fill_discrete(guide = FALSE) +
ggtitle("Supervised PCA Significant Colon Pathways") +
xlab("Pathways") +
scale_y_continuous("Negative Log p-Value", limits = c(0, graphMax)) +
geom_hline(yintercept = -log(0.01), size = 2) +
coord_flip()
## ----sessionDetails-----------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.