Description Usage Arguments Value Author(s) Examples
The function predictionet.press.statistic
computes the press statistic for all target variables in the provided topology.
1 | predictionet.press.statistic(topo,data,ensemble=FALSE,perturbations=NULL)
|
topo |
adjacency matrix of 0,1 indicating whether two variables are connected |
data |
matrix of continuous or categorical values (gene expressions for example); observations in rows, features in columns. |
perturbations |
matrix of 0, 1 specifying whether a gene has been perturbed (e.g., knockdown, overexpression) in some experiments. Dimensions should be the same than |
ensemble |
|
A vector of press statistics, one for every target variable.
Benjamin Haibe-Kains, Catharina Olsen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ## load gene expression data for colon cancer data, list of genes related to RAS signaling pathway and the corresponding priors
data(expO.colon.ras)
## create matrix of perturbations (no perturbations in this dataset)
pert <- matrix(0, nrow=nrow(data.ras), ncol=ncol(data.ras), dimnames=dimnames(data.ras))
## number of genes to select for the analysis
genen <- 10
## select only the top genes
goi <- dimnames(annot.ras)[[1]][order(abs(log2(annot.ras[ ,"fold.change"])), decreasing=TRUE)[1:genen]]
mydata <- data.ras[ , goi, drop=FALSE]
myannot <- annot.ras[goi, , drop=FALSE]
mypriors <- priors.ras[goi, goi, drop=FALSE]
mydemo <- demo.ras
mypert <- pert[ , goi, drop=FALSE]
########################
## regression-based network inference
########################
## number of fold for cross-validation
res <- netinf.cv(data=mydata, categories=3, perturbations=mypert, priors=mypriors, priors.weight=0.5, method="regrnet", nfold=3, seed=54321)
## MCC for predictions in cross-validation
print(res$prediction.score.cv)
## export network as a 'gml' file that you can import into Cytoscape
## Not run: rr <- netinf2gml(object=res, file="predictionet_regrnet")
########################
## bayesian network inference
########################
## infer a bayesian network network from data and priors
## number of fold for cross-validation
## Not run: res <- netinf.cv(data=mydata, categories=3, perturbations=mypert, priors=mypriors, priors.count=TRUE, priors.weight=0.5, method="bayesnet", nfold=3, seed=54321)
## MCC for predictions in cross-validation
## Not run: print(res$prediction.score.cv)
## export network as a 'gml' file that you can import into Cytoscape
## Not run: rr <- netinf2gml(object=res, file="predictionet_bayesnet")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.