Description Usage Arguments Value Author(s) Examples
Function to fit a regression model for each variable in the dataset or alternatively each variable of interest.
1 |
net |
network object. |
data |
matrix of continuous or categorical values (gene expressions for example); observations in rows, features in columns. |
categories |
if this parameter missing, 'data' should be already discretized; otherwise either a single integer or a vector of integers specifying the number of categories used to discretize each variable (data are then discretized using equal-frequency bins) or a list of cutoffs to use to discretize each of the variables in 'data' matrix. If method='bayesnet' and |
predn |
indices or names of variables to fit during network inference. If missing, all the variables will be used for network inference. |
perturbations |
matrix of 0,1 specifying whether a gene has been perturbed (e.g., knockdown, overexpression) in some experiments. Dimensions should be the same than |
method |
type of predictive model to fit; |
seed |
set the seed to make the cross-validation and network inference deterministic. |
a new network object with the predictive models
Benjamin Haibe-Kains, Catharina Olsen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## load gene expression data for colon cancer data, list of genes related to RAS signaling pathway and the corresponding priors
data(expO.colon.ras)
## create matrix of perturbations (no perturbations in this dataset)
pert <- matrix(0, nrow=nrow(data.ras), ncol=ncol(data.ras), dimnames=dimnames(data.ras))
## number of genes to select for the analysis
genen <- 10
## select only the top genes
goi <- dimnames(annot.ras)[[1]][order(abs(log2(annot.ras[ ,"fold.change"])), decreasing=TRUE)[1:genen]]
mydata <- data.ras[ , goi, drop=FALSE]
myannot <- annot.ras[goi, , drop=FALSE]
mypriors <- priors.ras[goi, goi, drop=FALSE]
mydemo <- demo.ras
mypert <- pert[ , goi, drop=FALSE]
########################
## regression-based network inference
########################
## infer global network from data and priors
mynet <- netinf(data=mydata, perturbations=mypert, priors=mypriors, priors.count=TRUE, priors.weight=0.5, maxparents=3, method="regrnet", seed)
net2pred(net=mynet, data=mydata, method="linear")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.