Description Usage Arguments Value Author(s) Examples
This function predict the value of a node given its parents using an inferred network
1 | netinf.predict(net, data, categories, perturbations, subset, predn, method=c("linear", "linear.penalized", "cpt"))
|
net |
a network object with local regression models. |
data |
matrix of continuous or categorical values (gene expressions for example); observations in rows, features in columns. |
categories |
if this parameter missing, 'data' should be already discretize; otherwise either a single integer or a vector of integers specifying the number of categories used to discretize each variable (data are then discretized using equal-frequency bins) or a list of cutoffs to use to discretize each of the variables in 'data' matrix. If method='bayesnet', this parameter should be specified by the user. |
perturbations |
matrix of 0, 1 specifying whether a gene has been perturbed (e.g., knockdown, overexpression) in some experiments. Dimensions should be the same than |
subset |
vector of indices to select only subset of the observations. |
predn |
indices or names of variables to fit during network inference. If missing, all the variables will be used for network inference. |
method |
|
matrix of predicted values
Benjamin Haibe-Kains, Catharina Olsen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## load gene expression data for colon cancer data, list of genes related to RAS signaling pathway and the corresponding priors
data(expO.colon.ras)
## number of genes to select for the analysis
genen <- 10
## select only the top genes
goi <- dimnames(annot.ras)[[1]][order(abs(log2(annot.ras[ ,"fold.change"])), decreasing=TRUE)[1:genen]]
mydata <- data.ras[ , goi, drop=FALSE]
myannot <- annot.ras[goi, , drop=FALSE]
mypriors <- priors.ras[goi, goi, drop=FALSE]
mydemo <- demo.ras
## infer global network from data and priors
mynet <- netinf(data=mydata, priors=mypriors, priors.count=TRUE, priors.weight=0.5, maxparents=3, method="regrnet", seed=54321)
mynet <- net2pred(net=mynet, data=mydata, method="linear")
## predict gene expression of the first gene
mypreds <- netinf.predict(net=mynet, data=mydata, predn=goi[1])[ ,goi[1]]
## root mean squared error (RMSE)
nrmse <- sqrt(mean((mydata[ ,goi[1]] - mypreds)^2))
## R2
r2 <- cor(mydata[ ,goi[1]], mypreds)^2
plot(mydata[ ,goi[1]], mypreds, xlab="Observed gene expression", ylab="Predicted gene expression")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.