Description Usage Arguments Value See Also Examples
View source: R/data_geNormalisationFiltering.R
Uses filterByExpr to determine genes with sufficiently
large counts to retain for statistical analysis.
| 1 2 3 4 5 6 7 8 9 | filterGeneExpr(
  geneExpr,
  minMean = 0,
  maxMean = Inf,
  minVar = 0,
  maxVar = Inf,
  minCounts = 10,
  minTotalCounts = 15
)
 | 
| geneExpr | Data frame or matrix: gene expression | 
| minMean | Numeric: minimum of read count mean per gene | 
| maxMean | Numeric: maximum of read count mean per gene | 
| minVar | Numeric: minimum of read count variance per gene | 
| maxVar | Numeric: maximum of read count variance per gene | 
| minCounts | Numeric: minimum number of read counts per gene for a
worthwhile number of samples (check  | 
| minTotalCounts | Numeric: minimum total number of read counts per gene | 
Boolean vector indicating which genes have sufficiently large counts
Other functions for gene expression pre-processing: 
convertGeneIdentifiers(),
normaliseGeneExpression(),
plotGeneExprPerSample(),
plotLibrarySize(),
plotRowStats()
| 1 2 3 4 5 6 7 8 9 10 11 | geneExpr <- readFile("ex_gene_expression.RDS")
# Add some genes with low expression
geneExpr <- rbind(geneExpr,
                  lowReadGene1=c(rep(4:5, 10)),
                  lowReadGene2=c(rep(5:1, 10)),
                  lowReadGene3=c(rep(10:1, 10)),
                  lowReadGene4=c(rep(7:8, 10)))
# Filter out genes with low reads across samples
geneExpr[filterGeneExpr(geneExpr), ]
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.