Description Usage Arguments Value See Also Examples
View source: R/data_geNormalisationFiltering.R
Uses filterByExpr
to determine genes with sufficiently
large counts to retain for statistical analysis.
1 2 3 4 5 6 7 8 9 | filterGeneExpr(
geneExpr,
minMean = 0,
maxMean = Inf,
minVar = 0,
maxVar = Inf,
minCounts = 10,
minTotalCounts = 15
)
|
geneExpr |
Data frame or matrix: gene expression |
minMean |
Numeric: minimum of read count mean per gene |
maxMean |
Numeric: maximum of read count mean per gene |
minVar |
Numeric: minimum of read count variance per gene |
maxVar |
Numeric: maximum of read count variance per gene |
minCounts |
Numeric: minimum number of read counts per gene for a
worthwhile number of samples (check |
minTotalCounts |
Numeric: minimum total number of read counts per gene |
Boolean vector indicating which genes have sufficiently large counts
Other functions for gene expression pre-processing:
convertGeneIdentifiers()
,
normaliseGeneExpression()
,
plotGeneExprPerSample()
,
plotLibrarySize()
,
plotRowStats()
1 2 3 4 5 6 7 8 9 10 11 | geneExpr <- readFile("ex_gene_expression.RDS")
# Add some genes with low expression
geneExpr <- rbind(geneExpr,
lowReadGene1=c(rep(4:5, 10)),
lowReadGene2=c(rep(5:1, 10)),
lowReadGene3=c(rep(10:1, 10)),
lowReadGene4=c(rep(7:8, 10)))
# Filter out genes with low reads across samples
geneExpr[filterGeneExpr(geneExpr), ]
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.