Description Usage Arguments Details Value Examples
All-in-one function for scCB2. Take 10x output raw data as input 
and return either a matrix of real cells identified by CB2 or 
a Seurat object containing this matrix, which can be incorporated 
with downstream analysis using Seurat pipeline.
| 1 2 3 4 5 6 7 8 9 10 | 
| dir | The directory of 10x output data. For Cell Ranger version <3, directory should include three files: barcodes.tsv, genes.tsv, matrix.mtx. For Cell Ranger version >=3, directory should include three files: barcodes.tsv.gz, features.tsv.gz, matrix.mtx.gz. | 
| h5file | The path of 10x output HDF5 file (ended with .h5). | 
| FDR_threshold | Numeric between 0 and 1. Default: 0.01. The False Discovery Rate (FDR) to be controlled for multiple testing. | 
| MTfilter | Numeric value between 0 and 1. Default:  | 
| MTgene | Character vector. User may specify customized mitochondrial gene IDs to perform the filtering. This should correspond to a subset of row names in raw data. | 
| AsSeurat | Logical. Default:  | 
| Ncores | Positive integer. Default:  | 
| ... | Additional arguments to be passed to  | 
QuickCB2 is a quick function to apply CB2 on 10x Cell Ranger 
raw data by combining Read10xRaw, Read10xRawH5, 
CB2FindCell and GetCellMat into one simple function 
under default parameters.
Either a sparse matrix of real cells identified by CB2 or a Seurat object containing real cell matrix.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # simulate 10x output files
data(mbrainSub)
mbrainSub <- mbrainSub[,1:10000]
data_dir <- file.path(tempdir(),"CB2example")
dir.create(data_dir)
gene_name <- rownames(mbrainSub)
# For simplicity, use gene names to generate gene IDs to fit the format.
gene_id <- paste0("ENSG_fake_",gene_name)
barcode_id <- colnames(mbrainSub)
Matrix::writeMM(mbrainSub,file = file.path(data_dir,"matrix.mtx"))
write.table(barcode_id,file = file.path(data_dir,"barcodes.tsv"),
    sep = "\t", quote = FALSE, col.names = FALSE, row.names = FALSE)
write.table(cbind(gene_id,gene_name),file = file.path(data_dir,"genes.tsv"),
    sep = "\t", quote = FALSE, col.names = FALSE, row.names = FALSE)
# Run QuickCB2 on 10x raw data and get cell matrix.
# Control FDR at 1%. Use 2-core parallel computation.
RealCell <- QuickCB2(dir = data_dir, 
                     FDR_threshold = 0.01,
                     Ncores = 2)
str(RealCell)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.