bootstrap_parallel: BootStrap runs for both scGPS training and prediction with...

Description Usage Arguments Value Author(s) Examples

View source: R/MainLassoLDATraining.R

Description

same as bootstrap_prediction, but with an multicore option

Usage

1
2
3
4
bootstrap_parallel(ncores = 4, nboots = 1, genes = genes,
  mixedpop1 = mixedpop1, mixedpop2 = mixedpop2, c_selectID,
  listData = list(), cluster_mixedpop1 = NULL,
  cluster_mixedpop2 = NULL)

Arguments

ncores

a number specifying how many cpus to be used for running

nboots

a number specifying how many bootstraps to be run

genes

a gene list to build the model

mixedpop1

a SingleCellExperiment object from a mixed population for training

mixedpop2

a SingleCellExperiment object from a target mixed population for prediction

c_selectID

the root cluster in mixedpop1 to becompared to clusters in mixedpop2

listData

a list object, which contains trained results for the first mixed population

cluster_mixedpop1

a vector of cluster assignment for mixedpop1

cluster_mixedpop2

a vector of cluster assignment for mixedpop2

Value

a list with prediction results written in to the index out_idx

Author(s)

Quan Nguyen, 2017-11-25

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
day2 <- day_2_cardio_cell_sample
mixedpop1 <-new_scGPS_object(ExpressionMatrix = day2$dat2_counts, 
    GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
day5 <- day_5_cardio_cell_sample
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts, 
    GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
genes <-training_gene_sample
genes <-genes$Merged_unique
#prl_boots <- bootstrap_parallel(ncores = 4, nboots = 1, genes=genes,
#    mixedpop1 = mixedpop2, mixedpop2 = mixedpop2,  c_selectID=1,
#    listData =list())
#prl_boots[[1]]$ElasticNetPredict
#prl_boots[[1]]$LDAPredict

scGPS documentation built on Nov. 8, 2020, 5:22 p.m.