Description Usage Arguments Value Author(s) Examples
View source: R/MainLassoLDATraining.R
same as bootstrap_prediction, but with an multicore option
1 2 3 4 | bootstrap_parallel(ncores = 4, nboots = 1, genes = genes,
mixedpop1 = mixedpop1, mixedpop2 = mixedpop2, c_selectID,
listData = list(), cluster_mixedpop1 = NULL,
cluster_mixedpop2 = NULL)
|
ncores |
a number specifying how many cpus to be used for running |
nboots |
a number specifying how many bootstraps to be run |
genes |
a gene list to build the model |
mixedpop1 |
a SingleCellExperiment object from a mixed population for training |
mixedpop2 |
a SingleCellExperiment object from a target mixed population for prediction |
c_selectID |
the root cluster in mixedpop1 to becompared to clusters in mixedpop2 |
listData |
a |
cluster_mixedpop1 |
a vector of cluster assignment for mixedpop1 |
cluster_mixedpop2 |
a vector of cluster assignment for mixedpop2 |
a list
with prediction results written in to the index
out_idx
Quan Nguyen, 2017-11-25
1 2 3 4 5 6 7 8 9 10 11 12 13 | day2 <- day_2_cardio_cell_sample
mixedpop1 <-new_scGPS_object(ExpressionMatrix = day2$dat2_counts,
GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
day5 <- day_5_cardio_cell_sample
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
genes <-training_gene_sample
genes <-genes$Merged_unique
#prl_boots <- bootstrap_parallel(ncores = 4, nboots = 1, genes=genes,
# mixedpop1 = mixedpop2, mixedpop2 = mixedpop2, c_selectID=1,
# listData =list())
#prl_boots[[1]]$ElasticNetPredict
#prl_boots[[1]]$LDAPredict
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.