R/getExplanatoryPCs.R

Defines functions getExplanatoryPCs

Documented in getExplanatoryPCs

#' Per-PC variance explained by a variable
#'
#' Compute, for each principal component, the percentage of variance that is explained by one or more variables of interest.
#'
#' @param x A \linkS4class{SingleCellExperiment} object containing dimensionality reduction results.
#' @param dimred String or integer scalar specifying the field in \code{reducedDims(x)} that contains the PCA results.
#' @param n_dimred Integer scalar specifying the number of the top principal components to use.
#' @param ... Additional arguments passed to \code{\link{getVarianceExplained}}.
#'
#' @details 
#' This function computes the percentage of variance in PC scores that is explained by variables in the sample-level metadata.
#' It allows identification of important PCs that are driven by known experimental conditions, e.g., treatment, disease.
#' PCs correlated with technical factors (e.g., batch effects, library size) can also be detected and removed prior to further analysis.
#'
#' By default, the function will attempt to use pre-computed PCA results in \code{object}.
#' This is done by taking the top \code{n_dimred} PCs from the matrix specified by \code{dimred}.
#' If these are not available or if \code{rerun=TRUE}, the function will rerun the PCA using \code{\link{runPCA}};
#' however, this mode is deprecated and users are advised to explicitly call \code{runPCA} themselves.
#'
#' @return
#' A matrix containing the percentage of variance explained by each factor (column) and for each PC (row).
#'
#' @seealso
#' \code{\link{plotExplanatoryPCs}}, to plot the results.
#' 
#' \code{\link{getVarianceExplained}}, to compute the variance explained.
#'
#' @author Aaron Lun
#'
#' @examples
#' example_sce <- mockSCE()
#' example_sce <- logNormCounts(example_sce)
#' example_sce <- runPCA(example_sce)
#' 
#' r2mat <- getExplanatoryPCs(example_sce)
#'
#' @export
#' @importFrom SingleCellExperiment reducedDim reducedDimNames SingleCellExperiment
getExplanatoryPCs <- function(x, dimred="PCA", n_dimred=10, ...) {
    reddims <- reducedDim(x, dimred)
    n_dimred <- min(n_dimred, ncol(reddims))
    reddims <- reddims[,seq_len(n_dimred),drop=FALSE]

    # Using getVarianceExplained to handle variable selection.
    dummy <- SingleCellExperiment(list(pc_space=t(reddims)), colData=colData(x))
    getVarianceExplained(dummy, exprs_values="pc_space", ...)
}

Try the scater package in your browser

Any scripts or data that you put into this service are public.

scater documentation built on Feb. 28, 2021, 2:01 a.m.