Description Usage Arguments Value Examples
Generates the signatures.
1 2 3 4 5 6 7 | signeR(M, Mheader = TRUE, samples = "rows", Opport = NA,
Oppheader = FALSE, nsig = NA, nlim = c(NA, NA),
try_all = FALSE, ap = NA, bp = NA, ae = NA, be = NA,
lp = NA, le = NA, var.ap = 10, var.ae = 10,
testing_burn = 1000, testing_eval = 1000, EM_eval = 100,
main_burn = 10000, main_eval = 2000, start = "lee",
estimate_hyper = FALSE, EMit_lim=100)
|
M |
mutation counts matrix of samples x features. |
Mheader |
if M have colnames defined use TRUE, if FALSE a default order will be assumed. |
samples |
if the samples are row-wise or column-wise in M, default is "row". |
Opport |
context count matrix of samples x features in the target genome or region. |
Oppheader |
if Opport have header defined. |
nsig |
number of signatures, which can be provided or estimated by the algorithm. |
nlim |
define a interval to search for the optimal number of signatures. |
try_all |
if true, all possible values for nsig will be tested |
ap |
shape parameter of the gamma distribution used to generate the entries of a matrix of rate parameters of the gamma distributions which generate signatures. |
bp |
rate parameter of the gamma distribution used to generate the entries of a matrix of rate parameters of the gamma distributions which generate signatures. |
ae |
shape parameter of the gamma distribution used to generate the entries of a matrix of rate parameters of the gamma distributions which generate exposures. |
be |
rate parameter of the gamma distribution used to generate the entries of a matrix of rate parameters of the gamma distributions which generate exposures. |
lp |
parameter of the exponential distribution used to generate the entries of a matrix of shape parameters of the gamma distributions which generate signatures. |
le |
parameter of the exponential distribution used to generate the entries of a matrix of shape parameters of the gamma distributions which generate exposures. |
var.ap |
variance of the gamma distribution used to generate proposals for shape parameters of signatures |
var.ae |
variance of the gamma distribution used to generate proposals for shape parameters of exposures |
testing_burn |
number of burning iterations of the Gibbs sampler used to estimate the number of signatures in data. Corresponds to R0 at Algorithm 1 on signeR paper. |
testing_eval |
number of iterations of the Gibbs sampler used to estimate the number of signatures in data. Corresponds to R2 at Algorithm 1 on signeR paper. |
EM_eval |
number of samples generated at each iteration of the EM algorithm. Corresponds to R1 at Algorithm 1 on signeR paper. |
main_burn |
number of burning iterations of the final Gibbs sampler. |
main_eval |
number of iterations of the final Gibbs sampler. |
start |
NMF algorithm used to generate initial values for signatures and exposures,options: "brunet","KL","lee","Frobenius","offset","nsNMF", "ls-nmf","pe-nmf","siNMF","snmf/r" or "snmf/l". |
estimate_hyper |
if TRUE, algorithm estimates optimal values of ap,bp,ae,be,lp,le. Start values can still be provided. |
EMit_lim |
limit of EM iterations for the estimation of hyper-hyperparameters ap,bp,ae,be,lp,le. Default is 100. Corresponds to U at Algorithm 1 on signeR paper. |
signeR output is a list with the following items:
Nsign |
selected number of signatures. |
tested_n |
array containing the numbers of signatures tested by the algorithm. |
Test_BICs |
list of measured BIC values when testing different numbers of signatures. |
Phat |
Estimated signatures, median of P samples. |
Ehat |
Estimated exposures, median of E samples. |
SignExposures |
SignExp object which contain the set of samples for the model parameters. |
Bics |
measured BIC values on the final run of the sampler. |
HyperParam |
evolution of estimated hyperparameters when testing different numbers of signatures. |
1 | vignette(package="signeR")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.