Brings SummarizedExperiment to the tidyverse!
website: stemangiola.github.io/tidySummarizedExperiment/
Please also have a look at
tidySummarizedExperiment provides a bridge between Bioconductor SummarizedExperiment [@morgan2020summarized] and the tidyverse [@wickham2019welcome]. It creates an invisible layer that enables viewing the Bioconductor SummarizedExperiment object as a tidyverse tibble, and provides SummarizedExperiment-compatible dplyr, tidyr, ggplot and plotly functions. This allows users to get the best of both Bioconductor and tidyverse worlds.
| SummarizedExperiment-compatible Functions | Description |
|-------------------------------------------|------------------------------------------------------------------|
| all
| After all tidySummarizedExperiment
is a SummarizedExperiment object, just better |
| tidyverse Packages | Description |
|--------------------|---------------------------------------------|
| dplyr
| Almost all dplyr
APIs like for any tibble |
| tidyr
| Almost all tidyr
APIs like for any tibble |
| ggplot2
| ggplot
like for any tibble |
| plotly
| plot_ly
like for any tibble |
| Utilities | Description |
|-------------|-----------------------------------------------------------------|
| tidy
| Add tidySummarizedExperiment
invisible layer over a SummarizedExperiment object |
| as_tibble
| Convert cell-wise information to a tbl_df
|
From Bioconductor (under submission)
if (!requireNamespace("BiocManager", quietly=TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("tidySummarizedExperiment")
From Github
devtools::install_github("stemangiola/tidySummarizedExperiment")
Load libraries used in the examples.
library(ggplot2)
library(tidySummarizedExperiment)
tidySummarizedExperiment
, the best of both worlds!This is a SummarizedExperiment object but it is evaluated as tibble. So it is fully compatible both with SummarizedExperiment and tidyverse APIs.
pasilla_tidy <- tidySummarizedExperiment::pasilla %>%
tidy()
It looks like a tibble
pasilla_tidy
## # A tibble: 102,193 x 5
## sample condition type transcript counts
## <chr> <chr> <chr> <chr> <int>
## 1 untrt1 untreated single_end FBgn0000003 0
## 2 untrt1 untreated single_end FBgn0000008 92
## 3 untrt1 untreated single_end FBgn0000014 5
## 4 untrt1 untreated single_end FBgn0000015 0
## 5 untrt1 untreated single_end FBgn0000017 4664
## 6 untrt1 untreated single_end FBgn0000018 583
## 7 untrt1 untreated single_end FBgn0000022 0
## 8 untrt1 untreated single_end FBgn0000024 10
## 9 untrt1 untreated single_end FBgn0000028 0
## 10 untrt1 untreated single_end FBgn0000032 1446
## # … with 102,183 more rows
But it is a SummarizedExperiment object after all
pasilla_tidy@assays
## An object of class "SimpleAssays"
## Slot "data":
## List of length 1
## names(1): counts
We can use tidyverse commands to explore the tidy SummarizedExperiment object.
We can use slice
to choose rows by position, for example to choose the
first row.
pasilla_tidy %>%
slice(1)
## # A tibble: 1 x 5
## sample condition type transcript counts
## <chr> <chr> <chr> <chr> <int>
## 1 untrt1 untreated single_end FBgn0000003 0
We can use filter
to choose rows by criteria.
pasilla_tidy %>%
filter(condition == "untreated")
## # A tibble: 58,396 x 5
## sample condition type transcript counts
## <chr> <chr> <chr> <chr> <int>
## 1 untrt1 untreated single_end FBgn0000003 0
## 2 untrt1 untreated single_end FBgn0000008 92
## 3 untrt1 untreated single_end FBgn0000014 5
## 4 untrt1 untreated single_end FBgn0000015 0
## 5 untrt1 untreated single_end FBgn0000017 4664
## 6 untrt1 untreated single_end FBgn0000018 583
## 7 untrt1 untreated single_end FBgn0000022 0
## 8 untrt1 untreated single_end FBgn0000024 10
## 9 untrt1 untreated single_end FBgn0000028 0
## 10 untrt1 untreated single_end FBgn0000032 1446
## # … with 58,386 more rows
We can use select
to choose columns.
pasilla_tidy %>%
select(sample)
## # A tibble: 102,193 x 1
## sample
## <chr>
## 1 untrt1
## 2 untrt1
## 3 untrt1
## 4 untrt1
## 5 untrt1
## 6 untrt1
## 7 untrt1
## 8 untrt1
## 9 untrt1
## 10 untrt1
## # … with 102,183 more rows
We can use count
to count how many rows we have for each sample.
pasilla_tidy %>%
count(sample)
## # A tibble: 7 x 2
## sample n
## <chr> <int>
## 1 trt1 14599
## 2 trt2 14599
## 3 trt3 14599
## 4 untrt1 14599
## 5 untrt2 14599
## 6 untrt3 14599
## 7 untrt4 14599
We can use distinct
to see what distinct sample information we have.
pasilla_tidy %>%
distinct(sample, condition, type)
## # A tibble: 7 x 3
## sample condition type
## <chr> <chr> <chr>
## 1 untrt1 untreated single_end
## 2 untrt2 untreated single_end
## 3 untrt3 untreated paired_end
## 4 untrt4 untreated paired_end
## 5 trt1 treated single_end
## 6 trt2 treated paired_end
## 7 trt3 treated paired_end
We could use rename
to rename a column. For example, to modify the
type column name.
pasilla_tidy %>%
rename(sequencing=type)
## # A tibble: 102,193 x 5
## sample condition sequencing transcript counts
## <chr> <chr> <chr> <chr> <int>
## 1 untrt1 untreated single_end FBgn0000003 0
## 2 untrt1 untreated single_end FBgn0000008 92
## 3 untrt1 untreated single_end FBgn0000014 5
## 4 untrt1 untreated single_end FBgn0000015 0
## 5 untrt1 untreated single_end FBgn0000017 4664
## 6 untrt1 untreated single_end FBgn0000018 583
## 7 untrt1 untreated single_end FBgn0000022 0
## 8 untrt1 untreated single_end FBgn0000024 10
## 9 untrt1 untreated single_end FBgn0000028 0
## 10 untrt1 untreated single_end FBgn0000032 1446
## # … with 102,183 more rows
We could use mutate
to create a column. For example, we could create a
new type column that contains single and paired instead of single_end
and paired_end.
pasilla_tidy %>%
mutate(type=gsub("_end", "", type))
## # A tibble: 102,193 x 5
## sample condition type transcript counts
## <chr> <chr> <chr> <chr> <int>
## 1 untrt1 untreated single FBgn0000003 0
## 2 untrt1 untreated single FBgn0000008 92
## 3 untrt1 untreated single FBgn0000014 5
## 4 untrt1 untreated single FBgn0000015 0
## 5 untrt1 untreated single FBgn0000017 4664
## 6 untrt1 untreated single FBgn0000018 583
## 7 untrt1 untreated single FBgn0000022 0
## 8 untrt1 untreated single FBgn0000024 10
## 9 untrt1 untreated single FBgn0000028 0
## 10 untrt1 untreated single FBgn0000032 1446
## # … with 102,183 more rows
We could use unite
to combine multiple columns.into a single column.
pasilla_tidy %>%
unite("group", c(condition, type))
## # A tibble: 102,193 x 4
## sample group transcript counts
## <chr> <chr> <chr> <int>
## 1 untrt1 untreated_single_end FBgn0000003 0
## 2 untrt1 untreated_single_end FBgn0000008 92
## 3 untrt1 untreated_single_end FBgn0000014 5
## 4 untrt1 untreated_single_end FBgn0000015 0
## 5 untrt1 untreated_single_end FBgn0000017 4664
## 6 untrt1 untreated_single_end FBgn0000018 583
## 7 untrt1 untreated_single_end FBgn0000022 0
## 8 untrt1 untreated_single_end FBgn0000024 10
## 9 untrt1 untreated_single_end FBgn0000028 0
## 10 untrt1 untreated_single_end FBgn0000032 1446
## # … with 102,183 more rows
We can also combine commands with the tidyverse pipe %>%
.
For example, we could combine group_by
and summarise
to get the
total counts for each sample.
pasilla_tidy %>%
group_by(sample) %>%
summarise(total_counts=sum(counts))
## # A tibble: 7 x 2
## sample total_counts
## <chr> <int>
## 1 trt1 18670279
## 2 trt2 9571826
## 3 trt3 10343856
## 4 untrt1 13972512
## 5 untrt2 21911438
## 6 untrt3 8358426
## 7 untrt4 9841335
We could combine group_by
, mutate
and filter
to get the
transcripts with mean count > 0.
pasilla_tidy %>%
group_by(transcript) %>%
mutate(mean_count=mean(counts)) %>%
filter(mean_count > 0)
## # A tibble: 86,513 x 6
## # Groups: transcript [12,359]
## sample condition type transcript counts mean_count
## <chr> <chr> <chr> <chr> <int> <dbl>
## 1 untrt1 untreated single_end FBgn0000003 0 0.143
## 2 untrt1 untreated single_end FBgn0000008 92 99.6
## 3 untrt1 untreated single_end FBgn0000014 5 1.43
## 4 untrt1 untreated single_end FBgn0000015 0 0.857
## 5 untrt1 untreated single_end FBgn0000017 4664 4672.
## 6 untrt1 untreated single_end FBgn0000018 583 461.
## 7 untrt1 untreated single_end FBgn0000022 0 0.143
## 8 untrt1 untreated single_end FBgn0000024 10 7
## 9 untrt1 untreated single_end FBgn0000028 0 0.429
## 10 untrt1 untreated single_end FBgn0000032 1446 1085.
## # … with 86,503 more rows
my_theme <-
list(
scale_fill_brewer(palette="Set1"),
scale_color_brewer(palette="Set1"),
theme_bw() +
theme(
panel.border=element_blank(),
axis.line=element_line(),
panel.grid.major=element_line(size=0.2),
panel.grid.minor=element_line(size=0.1),
text=element_text(size=12),
legend.position="bottom",
aspect.ratio=1,
strip.background=element_blank(),
axis.title.x=element_text(margin=margin(t=10, r=10, b=10, l=10)),
axis.title.y=element_text(margin=margin(t=10, r=10, b=10, l=10))
)
)
We can treat pasilla_tidy
as a normal tibble for plotting.
Here we plot the distribution of counts per sample.
pasilla_tidy %>%
tidySummarizedExperiment::ggplot(aes(counts + 1, group=sample, color=`type`)) +
geom_density() +
scale_x_log10() +
my_theme
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.