modelGradient: Model log-likelihood/objective error function and its...

Description Usage Arguments Value See Also Examples

Description

modeGradient gives the gradient of the objective function for a model. By default the objective function (modelObjective) is a negative log likelihood (modelLogLikelihood).

Usage

1
2
3

Arguments

params

parameter vector to evaluate at.

model

model structure.

...

optional additional arguments.

Value

g

the gradient of the error function to be minimised.

v

the objective function value (lower is better).

ll

the log-likelihood value.

See Also

modelOptimise.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
  # Load a mmgmos preprocessed fragment of the Drosophila developmental
  # time series
  data(drosophila_gpsim_fragment)

  # The probe identifier for TF 'twi'
  twi <- "143396_at"
  # The probe identifier for the target gene
  targetProbe <- "152715_at"

  # Create the model but do not optimise
  model <- GPLearn(drosophila_gpsim_fragment,
                   TF=twi, targets=targetProbe,
                   useGpdisim=TRUE, quiet=TRUE,
                   dontOptimise=TRUE)
  params <- modelExtractParam(model, only.values=FALSE)
  ll <- modelLogLikelihood(model)
  paramValues <- modelExtractParam(model, only.values=TRUE)
  modelGradient(paramValues, model)

tigre documentation built on Nov. 8, 2020, 5:32 p.m.