BurrDist | R Documentation |
Density, distribution function, quantile function, random generation and calculation of the expected value for the Burr distribution with parameters theta, kappa and sig2.
dburr(x, theta = 1, kappa = 1.2, sig2 = 0.3, forceExpectation = F)
pburr(x, theta = 1, kappa = 1.2, sig2 = .3, forceExpectation = F)
qburr(p, theta = 1, kappa = 1.2, sig2 = .3, forceExpectation = F)
rburr(n = 1, theta = 1, kappa = 1.2, sig2 = .3, forceExpectation = F)
burrExpectation(theta = 1, kappa = 1.2, sig2 = .3)
x |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations.. |
theta , kappa , sig2 |
parameters, see 'Details'. |
forceExpectation |
logical; if |
The PDF for the Burr distribution is (as in e.g. Grammig and Maurer, 2000):
f(x)=\frac{\theta \kappa x^{\kappa - 1}}{(1 + \sigma^2 x^{\kappa)^{\frac{1}{\sigma^2}+1}}}
dburr
gives the density (PDF), qburr
the quantile function (inverted CDF), rburr
generates random deviates, and burrExpectation
returns the expected value of the distribution, given the parameters.
Markus Belfrage
Grammig, J., and Maurer, K.-O. (2000) Non-monotonic hazard functions and the autoregressive conditional duration model. Econometrics Journal 3: 16-38.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.