checkConv | R Documentation |
This function checks the convergence information contained in models of various classes.
checkConv(mod, ...)
## S3 method for class 'betareg'
checkConv(mod, ...)
## S3 method for class 'clm'
checkConv(mod, ...)
## S3 method for class 'clmm'
checkConv(mod, ...)
## S3 method for class 'glm'
checkConv(mod, ...)
## S3 method for class 'glmmTMB'
checkConv(mod, ...)
## S3 method for class 'hurdle'
checkConv(mod, ...)
## S3 method for class 'lavaan'
checkConv(mod, ...)
## S3 method for class 'maxlikeFit'
checkConv(mod, ...)
## S3 method for class 'merMod'
checkConv(mod, ...)
## S3 method for class 'lmerModLmerTest'
checkConv(mod, ...)
## S3 method for class 'multinom'
checkConv(mod, ...)
## S3 method for class 'nls'
checkConv(mod, ...)
## S3 method for class 'polr'
checkConv(mod, ...)
## S3 method for class 'unmarkedFit'
checkConv(mod, ...)
## S3 method for class 'zeroinfl'
checkConv(mod, ...)
mod |
an object containing the output of a model of the classes mentioned above. |
... |
additional arguments passed to the function. |
This function checks the element of a model object that contains the
convergence information from the optimization function. The function
is currently implemented for models of classes betareg
,
clm
, clmm
, glm
, glmmTMB
, hurdle
,
lavaan
, maxlikeFit
, merMod
,
lmerModLmerTest
, multinom
, nls
, polr
,
unmarkedFit
, and zeroinfl
. The function is particularly
useful for functions with several groups of parameters, such as those
of the unmarked
package (Fiske and Chandler, 2011).
checkConv
returns a list with the following components:
converged |
a logical value indicating whether the algorithm converged or not. |
message |
a string containing the message from the optimization function. |
Marc J. Mazerolle
Fiske, I., Chandler, R. (2011) unmarked: An R Package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43, 1–23.
checkParms
, covDiag
,
mb.gof.test
, Nmix.gof.test
##example modified from ?pcount
## Not run:
if(require(unmarked)){
##Simulate data
set.seed(3)
nSites <- 100
nVisits <- 3
##covariate
x <- rnorm(nSites)
beta0 <- 0
beta1 <- 1
##expected counts
lambda <- exp(beta0 + beta1*x)
N <- rpois(nSites, lambda)
y <- matrix(NA, nSites, nVisits)
p <- c(0.3, 0.6, 0.8)
for(j in 1:nVisits) {
y[,j] <- rbinom(nSites, N, p[j])
}
## Organize data
visitMat <- matrix(as.character(1:nVisits),
nSites, nVisits, byrow=TRUE)
umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x),
obsCovs=list(visit=visitMat))
## Fit model
fm1 <- pcount(~ visit ~ 1, umf, K=50)
checkConv(fm1)
}
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.