R/AIPW_tmle.R

#' @title Augmented Inverse Probability Weighting (AIPW) uses tmle or tmle3 as inputs
#'
#' @description `AIPW_tmle` class uses a fitted `tmle` or `tmle3` object as input
#'
#' @details Create an AIPW_tmle object that uses the estimated efficient influence function from a fitted `tmle` or `tmle3` object
#'
#' @section Constructor:
#' \code{AIPW$new(Y = NULL, A = NULL, tmle_fit = NULL, verbose = TRUE)}
#'
#' ## Constructor Arguments
#' \tabular{lll}{
#' \strong{Argument}      \tab   \strong{Type}     \tab     \strong{Details} \cr
#' \code{Y}               \tab   Integer           \tab     A vector of outcome (binary (0, 1) or continuous) \cr
#' \code{A}               \tab   Integer           \tab     A vector of binary exposure (0 or 1) \cr
#' \code{tmle_fit}        \tab   Object             \tab    A fitted `tmle` or `tmle3` object \cr
#' \code{verbose}         \tab   Logical           \tab    Whether to print the result (Default = TRUE)
#' }
#'
#' @section Public Methods:
#'  \tabular{lll}{
#'  \strong{Methods}      \tab   \strong{Details}                                      \tab \strong{Link}     \cr
#'  \code{summary()}      \tab   Summary of the average treatment effects from AIPW    \tab   [summary.AIPW_base]\cr
#'  \code{plot.p_score()} \tab   Plot the propensity scores by exposure status         \tab   [plot.p_score]\cr
#'  \code{plot.ip_weights()} \tab   Plot the inverse probability weights using truncated propensity scores  \tab   [plot.ip_weights]\cr
#'  }
#'
#' @section Public Variables:
#'  \tabular{lll}{
#'  \strong{Variable}     \tab   \strong{Generated by}      \tab     \strong{Return} \cr
#'  \code{n}              \tab   Constructor                \tab     Number of observations \cr
#'  \code{obs_est}        \tab   Constructor                \tab     Components calculating average causal effects \cr
#'  \code{estimates}      \tab   `summary()`                \tab     A list of Risk difference, risk ratio, odds ratio \cr
#'  \code{result}         \tab   `summary()`                \tab     A matrix contains RD, ATT, ATC, RR and OR with their SE and 95%CI \cr
#'  \code{g.plot}         \tab   `plot.p_score()`           \tab     A density plot of propensity scores by exposure status \cr
#'  \code{ip_weights.plot}         \tab   `plot.ip_weights()`           \tab     A box plot of inverse probability weights \cr
#'  }
#'
#' ## Public Variable Details
#' \describe{
#'    \item{\code{obs_est}}{This list extracts from the fitted `tmle` object.
#'    It includes propensity scores (`p_score`), counterfactual predictions (`mu`, `mu1` & `mu0`) and efficient influence functions (`aipw_eif1` & `aipw_eif0`)}
#'    \item{\code{g.plot}}{This plot is generated by `ggplot2::geom_density`}
#'    \item{\code{ip_weights.plot}}{This plot uses truncated propensity scores stratified by exposure status (`ggplot2::geom_boxplot`)}
#' }
#'
#' @return \code{AIPW_tmle} object
#'
#' @export
#'
#' @examples
#' vec <- function() sample(0:1,100,replace = TRUE)
#' df <- data.frame(replicate(4,vec()))
#' names(df) <- c("A","Y","W1","W2")
#'
#' ## From tmle
#' library(tmle)
#' library(SuperLearner)
#' tmle_fit <- tmle(Y=df$Y,A=df$A,W=subset(df,select=c("W1","W2")),
#'                  Q.SL.library="SL.glm",
#'                  g.SL.library="SL.glm",
#'                  family="binomial")
#' AIPW_tmle$new(A=df$A,Y=df$Y,tmle_fit = tmle_fit,verbose = TRUE)$summary()
AIPW_tmle <- R6::R6Class(
  "AIPW_tmle",
  portable = TRUE,
  inherit = AIPW_base,
  public = list(
    #-------------------------constructor----------------------------#
    initialize = function(Y=NULL,A=NULL,tmle_fit = NULL,verbose=TRUE){
      #initialize from AIPW_base class
      super$initialize(Y=Y,A=A,verbose=verbose)
      #check the fitted object is tmle or tmle3 and import values accordingly
      if (any(class(tmle_fit) %in% "tmle")){
        message("Cross-fitting is supported only within the outcome model from a fitted tmle object (with cvQinit = TRUE)")
        self$obs_est$mu0 <- tmle_fit$Qstar[,1]
        self$obs_est$mu1 <- tmle_fit$Qstar[,2]
        self$obs_est$mu <- self$obs_est$mu0*(1-private$A) + self$obs_est$mu1*(private$A)
        self$obs_est$raw_p_score <- tmle_fit$g$g1W
      } else {
        stop("The tmle_fit is neither a `tmle` or `tmle3_Fit` object")
      }
    }
  )
)

Try the AIPW package in your browser

Any scripts or data that you put into this service are public.

AIPW documentation built on June 11, 2021, 5:08 p.m.