Nothing
#' @title Testing AIPW constructor: input data dimension
#' @section Last Updated By:
#' Yongqi Zhong
#' @section Last Update Date:
#' 2021/01/26
test_that("AIPW_tmle class: tmle", {
require(tmle)
require(SuperLearner)
vec <- function() sample(0:1,100,replace = T)
df <- data.frame(replicate(4,vec()))
names(df) <- c("A","Y","W1","W2")
tmle_fit <- tmle(Y=df$Y,
A=df$A,
W=df[,3:4],
Q.SL.library="SL.glm",
g.SL.library="SL.glm",
family="binomial")
#test constructor
expect_error(AIPW_tmle$new(A=df$A,Y=df$Y,tmle_fit = "tmle_fit",verbose = T),
info = "The tmle_fit is neither a `tmle` or `tmle3_Fit` object")
expect_message(aipw_tmle <- AIPW_tmle$new(A=df$A,Y=df$Y,tmle_fit = tmle_fit,verbose = T),
info = "Cross-fitting is supported only within the outcome model from a fitted tmle object (with cvQinit = TRUE)")
#correctly print output
expect_output(aipw_tmle$summary(), regexp = "Estimate")
#check any null values after calculating results
expect_false(any(sapply(aipw_tmle$estimates, is.null)))
expect_false(any(sapply(aipw_tmle$libs, is.null)))
expect_false(any(sapply(aipw_tmle$obs_est, is.null)))
expect_false(is.null(aipw_tmle$result))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.