Description Usage Arguments Details Value References See Also Examples
Generation of Age-Length Keys (ALK) using incomplete data, by the method proposed by Hoenig et al. (1993, 1994).
1 2 3 |
Ak |
A list of |
fik |
A list of |
fiz |
A list of vectors of equal length ( |
age_classes |
A vector with the name of each age class. |
length_classes |
A vector with the name of each age class. |
threshold |
The value at which convergence is considered to be achieved: see ‘details’. |
maxiter |
The maximum number of iterations of the EM algorithm: see ‘details’. |
name |
A string with the name of the ALK. |
description |
A string describing the ALK. |
Calculates an ALK using the generalized method proposed by Hoenig et al. (1993, 1994), which uses an undefined number of data sets with known and unknown age information.
The returned ALKr
object contains information on the
convergence threshold that was used, the number of
iterations ran, and if convergence was reached.
The method proposed by Hoenig et al. (1993, 1994) is based on the EM algorithm as defined by Dempster et al. (1997), and it generates the ALK by a series of iterations which are repeated until convergence is acheived.
Let Nz
be a list of matrices containing the number
of fish in each length and age class for each of the
z
populations with unknown age information and with
length distribution specified by fiz
. Convergence is
tested by evaluating the greatest of the absolute
differences between all pairs of Nz
matrices
generated on the current and previous iterations:
max(mapply("-", Nz, Nz.old))
.
A list of ALKr
objects, one for each item in the
fiz
list, each containing a matrix with the
probability of an individual of age j
having length
i
, i.e. P(i|j), the vectors of age and length
classes, and information about the method used to generate
the key.
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum
Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society. Series B
(Methodological), 39/1, 1-38. DOI:
10.2307/2984875
Hoenig, J.M., Heisey, D.M., Hanumara, R.C. (1993). Using Prior and Current Information to Estimate Age Composition: a new kind of age-length key. ICES CM Documents 1993, 10.
Hoenig, J.M., Heisey, D.M., Hanumara, R.C. (1994). A computationally simple approach to using current and past data in age-length key. ICES CM Documents 1994, 5.
inverse_ALK kimura_chikuni hoenig_heisey gascuel
1 2 3 4 5 |
[[1]]
0 1 2 3 4 5
7 0.85711153 0.142888470 0.000000000 0.00000000 0.000000000 0.000000000
8 0.78448170 0.215518302 0.000000000 0.00000000 0.000000000 0.000000000
9 0.82905531 0.170944694 0.000000000 0.00000000 0.000000000 0.000000000
10 0.81434969 0.185650315 0.000000000 0.00000000 0.000000000 0.000000000
11 0.79104174 0.208958256 0.000000000 0.00000000 0.000000000 0.000000000
12 0.75768002 0.225203979 0.017116003 0.00000000 0.000000000 0.000000000
13 0.73377618 0.256594766 0.009629055 0.00000000 0.000000000 0.000000000
14 0.69553853 0.293634027 0.010827443 0.00000000 0.000000000 0.000000000
15 0.64168466 0.334757600 0.023557744 0.00000000 0.000000000 0.000000000
16 0.58960677 0.386734685 0.013293825 0.01036472 0.000000000 0.000000000
17 0.47786139 0.427413133 0.094725480 0.00000000 0.000000000 0.000000000
18 0.33363991 0.437781378 0.217551962 0.01102675 0.000000000 0.000000000
19 0.22413009 0.402880045 0.305365255 0.06762461 0.000000000 0.000000000
20 0.07364994 0.314562035 0.536844220 0.06667674 0.008267065 0.000000000
21 0.06592822 0.199764035 0.554441017 0.10719058 0.050238517 0.000000000
22 0.03020500 0.091264141 0.600896326 0.20565725 0.067622997 0.004354286
23 0.00000000 0.021042030 0.481022880 0.32495379 0.088608295 0.018252849
24 0.00000000 0.000000000 0.392528056 0.36267636 0.144979929 0.041864787
25 0.00000000 0.008593014 0.213033074 0.42890376 0.191286009 0.071532911
26 0.00000000 0.000000000 0.121320762 0.36471030 0.224063135 0.090991910
27 0.00000000 0.000000000 0.020607381 0.30031486 0.248424421 0.119933040
28 0.00000000 0.000000000 0.019916007 0.22699423 0.258932357 0.126545982
29 0.00000000 0.000000000 0.022564813 0.16249450 0.154534774 0.087937068
30 0.00000000 0.000000000 0.000000000 0.00000000 0.067322538 0.087764395
31 0.00000000 0.000000000 0.000000000 0.03489926 0.075143247 0.043286952
32 0.00000000 0.000000000 0.000000000 0.00000000 0.071039090 0.058615654
33 0.00000000 0.000000000 0.000000000 0.00000000 0.015927205 0.075962521
34 0.00000000 0.000000000 0.000000000 0.00000000 0.000000000 0.026757349
35 0.00000000 0.000000000 0.000000000 0.00000000 0.000000000 0.033686042
36 0.00000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
37 0.00000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
38 0.00000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
39 0.00000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
40 0.00000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
41 0.00000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
6 7 8 9 10 11
7 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
8 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
9 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
10 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
11 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
12 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
13 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
14 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
15 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
16 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
17 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
18 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
19 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
20 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
21 0.02243763 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
22 0.00000000 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
23 0.06612015 0.00000000 0.00000000 0.000000000 0.0000000000 0.000000000
24 0.03783253 0.02011834 0.00000000 0.000000000 0.0000000000 0.000000000
25 0.06034344 0.01333602 0.01024878 0.002722993 0.0000000000 0.000000000
26 0.13030531 0.05997379 0.00000000 0.008284878 0.0003499159 0.000000000
27 0.14637793 0.12095108 0.03643287 0.006347507 0.0006109141 0.000000000
28 0.15843762 0.18473223 0.01878552 0.003626368 0.0003220595 0.001707634
29 0.34587163 0.13170543 0.07240125 0.016630611 0.0039151070 0.001615938
30 0.43984134 0.26425236 0.09157217 0.041814889 0.0048374497 0.002532769
31 0.39985130 0.20520164 0.17904869 0.048653754 0.0075308433 0.005837737
32 0.42998168 0.22065989 0.14822623 0.052103484 0.0100435459 0.008253477
33 0.37256507 0.18751146 0.24707725 0.079773691 0.0136910561 0.006385123
34 0.18535044 0.29166083 0.31321962 0.143232147 0.0254480414 0.013350811
35 0.26697989 0.26055180 0.24164349 0.137434228 0.0394196264 0.018933568
36 0.40393972 0.15071983 0.24039367 0.115345739 0.0636961020 0.021536478
37 0.15591390 0.08900722 0.26527645 0.364231080 0.0646141662 0.049159412
38 0.00000000 0.21624423 0.32772586 0.263571274 0.1017975199 0.073796379
39 0.00000000 0.14834305 0.23635705 0.325307913 0.1531386606 0.116330697
40 0.00000000 0.00000000 0.49026457 0.250716358 0.1007458594 0.125028214
41 0.00000000 0.00000000 0.00000000 0.433869623 0.2737372594 0.222074675
12 13 14 15
7 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
8 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
9 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
10 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
11 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
12 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
13 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
14 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
15 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
16 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
17 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
18 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
19 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
20 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
21 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
22 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
23 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
24 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
25 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
26 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
27 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
28 0.000000e+00 0.0000000000 0.000000e+00 0.000000e+00
29 2.035454e-05 0.0002214859 8.705414e-05 0.000000e+00
30 6.208951e-05 0.0000000000 0.000000e+00 0.000000e+00
31 6.948634e-05 0.0004770979 0.000000e+00 0.000000e+00
32 1.673187e-04 0.0009096322 0.000000e+00 0.000000e+00
33 2.448375e-04 0.0007312945 1.304978e-04 0.000000e+00
34 2.760759e-04 0.0005178517 1.868343e-04 0.000000e+00
35 5.886320e-04 0.0007627247 0.000000e+00 0.000000e+00
36 9.247649e-04 0.0018808011 1.562898e-03 0.000000e+00
37 2.030698e-03 0.0082508082 1.504058e-03 1.220935e-05
38 1.633753e-03 0.0117091509 3.512600e-03 9.237708e-06
39 5.598296e-03 0.0111003244 3.824008e-03 0.000000e+00
40 4.924730e-03 0.0240528818 4.254083e-03 1.329952e-05
41 1.487509e-02 0.0511978060 4.106927e-03 1.386193e-04
Method: Hoenig et al.
Value
ConvergenceThreshold 1
Iterations 119
Converged TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.