Nothing
test_that("calc_density works with valid input", {
# Valid input: Participants with valid answers for housing type
survey_df <- data.frame(
person_id = c(1, 2, 3, 4),
question_concept_id = c(40192458, 40192458, 40192458, 40192458),
answer_concept_id = c(40192407, 40192472, 40192409, 40192433) # Low and High responses
)
# Expected output: Participant 1 has "Low" density, others have "High"
expected_output <- data.frame(
person_id = c(1, 2, 3, 4),
density = c("Low", "High", "High", "High")
)
# Call the function and compare with expected output
result <- calc_density(survey_df)
# Sort both result and expected output for comparison
result <- result[order(result$person_id), ]
expected_output <- expected_output[order(expected_output$person_id), ]
expect_equal(result$density, expected_output$density)
})
test_that("calc_density handles non-answers correctly", {
# Input with non-answer codes or irrelevant answer_concept_ids
survey_df <- data.frame(
person_id = c(1, 2, 3),
question_concept_id = c(40192458, 40192458, 40192458),
answer_concept_id = c(99999999, 99999998, 99999997) # Invalid codes
)
# Expected output: Empty data frame since non-answers are removed
expected_output <- data.frame(
person_id = integer(0), # Empty integer vector for person_id
density = character(0) # Empty character vector for density
)
result <- calc_density(survey_df)
# Sort both result and expected output
result <- result[order(result$person_id), ]
expected_output <- expected_output[order(expected_output$person_id), ]
expect_equal(result$density, expected_output$density)
})
test_that("calc_density handles missing responses correctly", {
# Some responses are missing or invalid
survey_df <- data.frame(
person_id = c(1, 2, 3),
question_concept_id = c(40192458, 40192458, 40192458),
answer_concept_id = c(903096, 40192407, 99999999) # Missing or invalid responses
)
# Expected output: NA for missing response, "Low" for valid, NA for invalid
expected_output <- data.frame(
person_id = c(2),
density = c("Low") # Only valid responses are expected
)
result <- calc_density(survey_df)
# Sort both result and expected output
result <- result[order(result$person_id), ]
expected_output <- expected_output[order(expected_output$person_id), ]
expect_equal(result$density, expected_output$density)
})
test_that("calc_density returns empty data frame for no relevant data", {
# Input where none of the question_concept_id matches
survey_df <- data.frame(
person_id = c(1, 2, 3),
question_concept_id = c(99999999, 99999999, 99999999), # Non-matching concept ID
answer_concept_id = c(40192407, 40192472, 40192409)
)
result <- calc_density(survey_df)
# Expect the result to be an empty data frame (no matching question_concept_id)
expect_equal(nrow(result), 0)
})
test_that("calc_density handles empty input", {
# Empty input case
survey_df <- data.frame(
person_id = integer(0),
question_concept_id = integer(0),
answer_concept_id = integer(0)
)
result <- calc_density(survey_df)
# Expect the result to be an empty data frame
expect_equal(nrow(result), 0)
})
test_that("calc_density handles invalid column names", {
# Input with incorrect column names
bad_survey_df <- data.frame(
wrong_person_id = c(1, 1),
wrong_question_id = c(40192458, 40192458),
wrong_answer_id = c(40192407, 40192407)
)
# Expect an error when the input does not have the correct column names
expect_error(calc_density(bad_survey_df), "object 'question_concept_id' not found")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.