Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(ggplot2)
## ----setup--------------------------------------------------------------------
library(ATE.ERROR)
set.seed(1)
data(Simulated_data)
Y_star <- Simulated_data$Y_star
Y <- Simulated_data$Y
A <- Simulated_data$T
Z <- Simulated_data$Z
X_star <- Simulated_data$X_star
X <- Simulated_data$X
p11 <- 0.8
p10 <- 0.2
sigma_epsilon <- 0.1
B <- 100
Lambda <- seq(0, 2, by = 0.5)
bootstrap_number <- 10
## -----------------------------------------------------------------------------
ATE.ERROR.XY_results_linear <- ATE.ERROR.XY(Y_star, A, Z, X_star, p11, p10, sigma_epsilon,
B, Lambda, extrapolation = "linear",
bootstrap_number)
## -----------------------------------------------------------------------------
ATE.ERROR.XY_results_quadratic <- ATE.ERROR.XY(Y_star, A, Z, X_star, p11, p10, sigma_epsilon,
B, Lambda, extrapolation = "quadratic",
bootstrap_number)
## -----------------------------------------------------------------------------
ATE.ERROR.XY_results_nonlinear <- ATE.ERROR.XY(Y_star, A, Z, X_star, p11, p10, sigma_epsilon,
B, Lambda, extrapolation = "nonlinear",
bootstrap_number)
## -----------------------------------------------------------------------------
combined_summary <- rbind(
ATE.ERROR.XY_results_linear$summary,
ATE.ERROR.XY_results_quadratic$summary,
ATE.ERROR.XY_results_nonlinear$summary)
## -----------------------------------------------------------------------------
True_ATE <- True_Estimation(Y, A, Z, X)
## -----------------------------------------------------------------------------
Naive_ATE_XY <- Naive_Estimation(Y_star, A, Z, X_star)
## -----------------------------------------------------------------------------
combined_summary <- data.frame(True_ATE = round(True_ATE, 3), combined_summary)
print(combined_summary)
## ----fig.width=8.5, fig.height=4----------------------------------------------
combined_data <- rbind(
ATE.ERROR.XY_results_linear$boxplot$data,
ATE.ERROR.XY_results_quadratic$boxplot$data,
ATE.ERROR.XY_results_nonlinear$boxplot$data
)
combined_plot <- ggplot(combined_data, aes(x = Method, y = ATE, fill = Method)) +
geom_boxplot() +
geom_hline(aes(yintercept = Naive_ATE_XY, color = "naive estimate"),
linetype = "dashed") +
geom_hline(aes(yintercept = True_ATE, color = "true estimate"),
linetype = "dashed") +
scale_color_manual(name = NULL, values = c("naive estimate" = "red",
"true estimate" = "blue")) +
labs(title = "ATE Estimates from the ATE.ERROR.XY Method with different
Approximations of the Extrapolation Function",
y = "ATE Estimate") +
theme_minimal() +
theme(legend.position = "right") +
guides(fill = guide_legend(title = NULL, order = 1),
color = guide_legend(title = NULL, override.aes = list(linetype = "dashed"),
order = 2))
print(combined_plot)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.