View source: R/polynomial_function.R
polynomial | R Documentation |
Linear regression analysis of an experiment with a quantitative factor or isolated effect of a quantitative factor
polynomial(
trat,
resp,
ylab = "Response",
xlab = "Independent",
yname.poly = "y",
xname.poly = "x",
grau = NA,
theme = theme_classic(),
point = "mean_sd",
color = "gray80",
posi = "top",
textsize = 12,
se = FALSE,
ylim = NA,
family = "sans",
pointsize = 4.5,
linesize = 0.8,
width.bar = NA,
n = NA,
SSq = NA,
DFres = NA
)
trat |
Numerical vector with treatments (Declare as numeric) |
resp |
Numerical vector containing the response of the experiment. |
ylab |
Dependent variable name (Accepts the expression() function) |
xlab |
Independent variable name (Accepts the expression() function) |
yname.poly |
Y name in equation |
xname.poly |
X name in equation |
grau |
Degree of the polynomial (1, 2 or 3) |
theme |
ggplot2 theme (default is theme_classic()) |
point |
Defines whether to plot mean ("mean"), all repetitions ("all"),mean with standard deviation ("mean_sd") or mean with standard error (default - "mean_se"). |
color |
Graph color (default is gray80) |
posi |
Legend position |
textsize |
Font size |
se |
Adds confidence interval (default is FALSE) |
ylim |
y-axis scale |
family |
Font family |
pointsize |
Point size |
linesize |
line size (Trendline and Error Bar) |
width.bar |
width of the error bars of a regression graph. |
n |
Number of decimal places for regression equations |
SSq |
Sum of squares of the residue |
DFres |
Residue freedom degrees |
Returns linear, quadratic or cubic regression analysis.
Gabriel Danilo Shimizu, shimizu@uel.br
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
polynomial2, polynomial2_color
data("phao")
with(phao, polynomial(dose,comp, grau = 2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.