Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE,
comment = "#>")
knitr::opts_chunk$set(fig.width = 7, fig.height = 5)
## ----setup, eval = FALSE------------------------------------------------------
# # if (!requireNamespace("remotes", quietly = TRUE)) {
# # install.packages("remotes")
# # }
# # Sys.unsetenv("GITHUB_PAT")
# # remotes::install_github("JGASmits/AnanseSeurat")
#
# library(AnanseSeurat)
# library(Seurat)
# library(Signac)
## ----load_scObject, eval = FALSE----------------------------------------------
# rds_file <- 'preprocessed_PDMC.Rds'
# pbmc <- readRDS(rds_file)
# DimPlot(pbmc,
# label = TRUE,
# repel = TRUE,
# reduction = "umap") + NoLegend()
## ----export_CPMs, eval = FALSE------------------------------------------------
# export_CPM_scANANSE(
# pbmc,
# min_cells <- 25,
# output_dir = paste0(tempdir(),'/analysis'),
# cluster_id = 'predicted.id',
# RNA_count_assay = 'RNA'
# )
## ----eval = FALSE-------------------------------------------------------------
# export_ATAC_scANANSE(
# pbmc,
# min_cells <- 25,
# output_dir = paste0(tempdir(),'/analysis'),
# cluster_id = 'predicted.id',
# ATAC_peak_assay = 'peaks'
# )
## ----eval = FALSE-------------------------------------------------------------
# contrasts <- list('B-naive_B-memory',
# 'B-memory_B-naive',
# 'B-naive_CD16-Mono',
# 'CD16-Mono_B-naive')
#
# config_scANANSE(
# pbmc,
# min_cells <- 25,
# output_dir = paste0(tempdir(),'/analysis'),
# cluster_id = 'predicted.id',
# genome = './data/hg38',
# additional_contrasts = contrasts
# )
## ----eval = FALSE-------------------------------------------------------------
# DEGS_scANANSE(
# pbmc,
# min_cells <- 25,
# output_dir = './analysis',
# cluster_id = 'predicted.id',
# additional_contrasts = contrasts
# )
## ----eval = FALSE-------------------------------------------------------------
# pbmc <- import_seurat_scANANSE(pbmc,
# cluster_id = 'predicted.id',
# anansnake_inf_dir = "./analysis/influence/")
## ----eval = FALSE-------------------------------------------------------------
# TF_influence <- per_cluster_df(pbmc,
# assay = 'influence',
# cluster_id = 'predicted.id')
#
# head(TF_influence)
## ----eval = FALSE-------------------------------------------------------------
# highlight_TF1 <- c('STAT4', 'MEF2C')
#
# DefaultAssay(object = pbmc) <- "RNA"
# plot_expression1 <-
# FeaturePlot(pbmc, features = highlight_TF1, ncol = 1)
# DefaultAssay(object = pbmc) <- "influence"
# plot_ANANSE1 <-
# FeaturePlot(
# pbmc,
# ncol = 1,
# features = highlight_TF1,
# cols = c("darkgrey", "#fc8d59")
# )
# print(plot_expression1 | plot_ANANSE1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.