Description Usage Arguments Value Examples
View source: R/AM_mix_weights_prior.R
Generate a configuration object to specify a prior on the hyperparameter γ for the Dirichlet prior on the mixture weights. We assume γ \sim Gamma(a,b). Alternatively, we can fix γ to a specific value. Default is γ=1/N, where N is the number of observations. In AntMAN we assume the following parametrization of the Gamma density:
p(x\mid a,b )= \frac{b^a x^{a-1}}{Γ(a)} \exp\{ -bx \}, \quad x>0.
| 1 | 
| a | The shape parameter a of the Gamma prior. | 
| b | The rate parameter b of the Gamma prior. | 
| gamma | It allows to fix γ to a specific value. | 
| init | The init value for γ, when we assume γ random. | 
A AM_mix_weights_prior object. This is a configuration list to be used as mix_weight_prior argument for AM_mcmc_fit.
| 1 2 3 4 | AM_mix_weights_prior_gamma (a=1, b=1)
AM_mix_weights_prior_gamma (a=1, b=1, init=1)
AM_mix_weights_prior_gamma (gamma = 3)
AM_mix_weights_prior_gamma () 
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.