Nothing
#' @title ko.weights
#' @description Estimation helper function:
#' Calculating variance minimizing weights. Only assigns weights to informative paths
#' @param tree A makeTree object
#' @return Returns vector of variance-minimizing weights on informative paths
#' @examples \donttest{
#' data(treeData1)
#' tree <- makeTree(treeData1)
#' Zhats <- wmmTree(tree, sample_length = 3)
#' ko.weights(tree)
#' }
#' @export
#' @import data.tree
#' @importFrom magrittr %>%
#' @importFrom tidyselect all_of
#' @importFrom MASS "ginv"
#' @importFrom stats cov
#' @importFrom dplyr "select"
ko.weights <- function(tree){
# extract sample values for each path with terminal node counts and
# informative paths
x <- tree$Get('targetEst_samples', filterFun = function(node) node$isLeaf,
traversal = 'post-order')
## incase the above is not in matrix form...
if(is.list(x)){
mat.x <- NULL
for (i in 1:length(x)) {
if (length(x[[i]]) > 0) {
mat.x <- cbind(mat.x, x[[i]])
colnames(mat.x)[dim(mat.x)[2]] <- names(x)[[i]]
}
}
x <- mat.x
}
# make this a data frame
x <- as.data.frame(x)
# select only leaves with marginal counts
getleaves <- which(tree$Get('TerminalCount', filterFun = isLeaf,
traversal = 'post-order'))
# if number of columns of x is greater than number of leaves, choose leaves only
if(dim(x)[2]>length(getleaves)){
x <- x %>%
select(all_of(getleaves))
}
# calculate weights
sig <- cov(log(x)) # covariance matrix- use log to avoid numerical errors
#prec <- Inverse(sig) # precision matrix
prec <- MASS::ginv(sig) # precision matrix
e <- seq(1,1,length.out = dim(sig)[1])
num.w <- t(e)%*%prec
den.w <- t(e)%*%prec%*%e
w <- 1/den.w[1]*num.w
colnames(w) <- names(getleaves)
return(w)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.