R/example_functions.R

Defines functions RAR.optimal RAR.trippa fut.trial.all fut.arm.simple eff.trial.any eff.trial.all eff.arm.infofract eff.arm.simple alloc.balanced alloc.simple

Documented in alloc.balanced alloc.simple eff.arm.infofract eff.arm.simple eff.trial.all eff.trial.any fut.arm.simple fut.trial.all RAR.optimal RAR.trippa

# ----- ALLOCATION -----

#' @name alloc.simple
#' @title Simple allocation function
#' @description [alloc.simple] independently randomises each unit to a group (i.e., flips a coin for each unit) so that the observed allocation probabilities may be far from the target ones. This strategy is often considered to be a poor choice.
#' @param m the 'BATSS' ingredient '`m`', a scalar corresponding to the number of participants to be allocated.
#' @param prob the 'BATSS' ingredient '`prob`', a named vector of allocation ratios or probabilities.
#' @return [alloc.simple] returns an object of class \link[base]{factor} of length '`m`' with levels matching the names of the vector '`prob`'.
#' @seealso [alloc.balanced()], another group allocation function.
#' @examples
#' alloc.simple(100, prob = c(A=.4,B=.6))
#' table(alloc.simple(100, prob = c(A=.4,B=.6)))
#' table(alloc.simple(100, prob = c(A=.4,B=.6)))
#' @export
alloc.simple = function(m,prob){
  prob = abs(prob)/sum(abs(prob)) # normalise probabilities
  factor(sample(names(prob), m, replace=TRUE, prob = prob), levels=names(prob))
}

#' @name alloc.balanced
#' @title Balanced allocation function
#' @description [alloc.balanced] first allocates the largest possible number of units to the different groups given their exact target probabilities and then assigns randomly the remaining units to the different groups according to multinomial draws. This method leads to observed allocation probabilities matching the target ones when m*prob is an integer for each group and to observed allocation probabilities (on average) closer to the target ones compared to [alloc.simple].
#' @param m the 'BATSS' ingredient '`m`', a scalar corresponding to the number of participants to be allocated.
#' @param prob the 'BATSS' ingredient '`prob`', a named vector of allocation ratios or probabilities.
#' @return [alloc.balanced] returns an object of class \link[base]{factor} of length '`m`' with levels matching the names of the vector '`prob`'.
#' @seealso [alloc.simple()], another group allocation function.
#' @examples
#' alloc.balanced(100, prob = c(A=.4,B=.6))
#' table(alloc.balanced(100, prob = c(A=.4,B=.6)))
#' table(alloc.balanced(100, prob = c(A=.4,B=.6)))
#' @export
alloc.balanced = function(m,prob){
  prob = abs(prob)/sum(abs(prob))
  m0.g = floor(prob*m)
  m0   = sum(m0.g)
  factor(rep(names(prob),m0.g+rmultinom(1,m-m0,prob)),
         levels=names(prob))
}


# ----- EFFICACY, ARMS -----

#' @name eff.arm.simple
#' @title Simple arm efficacy stop 
#' @description allows stopping an arm for efficacy at a given look when the probability of the corresponding target parameter being greater or smaller (depending on the argument `'alternative'` of [batss.glm]) than `delta.eff` is greater than a fixed value `b`.
#' @param posterior the 'BATSS' ingredient '`posterior`' corresponding, in this context, to the (posterior) probability of the target parameter being greater or smaller (depending on the argument `'alternative'` of [batss.glm]) than '`delta.eff`'.
#' @param b the cut-off value used to declare efficacy (to be defined in `eff.arm.control`).
#' @return [eff.arm.simple] returns a logical constant.
#' @export
eff.arm.simple = function(posterior,b){
  posterior > b
}

#' @name eff.arm.infofract
#' @title information-fraction based arm efficacy stop 
#' @description allows stopping an arm for efficacy at a given look when the probability of the corresponding target parameter being greater or smaller (depending on the argument `'alternative'` of [batss.glm]) than `delta.eff` is greater than a function of the information fraction at that look.
#' @param posterior the 'BATSS' ingredient '`posterior`' corresponding, in this context, to the (posterior) probability of the target parameter being greater or smaller (depending on the argument `'alternative'` of [batss.glm]) than '`delta.eff`'.
#' @param b a tuning parameter (to be defined in `eff.arm.control`).
#' @param n the 'BATSS' ingredient '`n`' corresponding to the vector of number of recruited participants per arm including the control group.
#' @param N the 'BATSS' ingredient '`N' corresponding to the maximum (planned) sample size.
#' @param p a tuning parameter (to be defined in `eff.arm.control`).
#' @return [eff.arm.infofract] returns a logical constant.
#' @export
eff.arm.infofract = function(posterior,b,n,N,p){
  posterior > (1-(b*(sum(n)/N)^p))
}


# ----- EFFICACY, TRIAL -----

#' @name eff.trial.all
#' @title trial efficacy stop 
#' @description allows stopping the trial for efficacy if *all* target parameters reached efficacy at the look of interest or before.
#' @param eff.target the 'BATSS' ingredient '`eff.target`' corresponding to a \link[base]{logical} vector of the same length as argument `which` (i.e., the number of target parameters) indicating if efficacy was reached for each target parameter at that stage or at a previous stage.
#' @return [eff.trial.all] returns a logical constant.
#' @export
eff.trial.all = function(eff.target){all(eff.target)}

#' @name eff.trial.any
#' @title trial efficacy stop 
#' @description allows stopping the trial for efficacy if *at least one* target parameter reached efficacy at the look of interest.
#' @param eff.target the 'BATSS' ingredient '`eff.target`' corresponding to a \link[base]{logical} vector of the same length as argument `which` (i.e., the number of target parameters) indicating if efficacy was reached for each target parameter at that stage or at a previous stage.
#' @return [eff.trial.any] returns a logical constant.
#' @export
eff.trial.any = function(eff.target){any(eff.target)}


# ----- FUTILITY, ARMS -----

#' @name fut.arm.simple
#' @title arm futility stop 
#' @description allows stopping an arm for futility when the probability of the corresponding target parameter being greater or smaller (depending on the argument `'alternative'` of [batss.glm]) than '`delta.fut`' is smaller than a fixed value '`b`'
#' @param posterior the 'BATSS' ingredient '`posterior`' corresponding, in this context, to the (posterior) probability of the target parameter being greater or smaller (depending on the argument `'alternative'` of [batss.glm]) than '`delta.fut`'.
#' @param b the cut-off value used to declare futility (to be defined in `fut.arm.control`).
#' @return [fut.arm.simple] returns a logical constant.
#' @export
fut.arm.simple = function(posterior,b){
  posterior < b
}


# ----- FUTILITY, TRIAL -----

#' @name fut.trial.all
#' @title trial futility stop 
#' @description allows stopping the trial for efficacy if *all* active treatment reached futility at the look of interest or before.
#' @param fut.target the 'BATSS' ingredient '`fut.target`' corresponding to a \link[base]{logical} vector of the same length as argument `which` (i.e., the number of target parameters) indicating if futility was declared for each target parameter at that stage or at a previous stage.
#' @return [fut.trial.all] returns a logical constant.
#' @export
fut.trial.all = function(fut.target){all(fut.target)}


# ----- RAR -----

#' @name RAR.trippa
#' @title RAR of Trippa et al. (2012)
#' @description define the group allocation probabilities based on the response adaptive randomisation rule of Trippa et al. (2012)
#' @param posterior the 'BATSS' ingredient '`posterior`' corresponding, in this context, to the (posterior) probability of the active target parameters being greater or smaller (depending on the argument `'alternative'` of [batss.glm]) than '`delta.RAR`'.
#' @param n the 'BATSS' ingredient '`n`' corresponding to the vector of number of recruited participants per arm including the control group at the look of interest.
#' @param N the 'BATSS' ingredient '`N' corresponding to the maximum (planned) sample size.
#' @param ref the 'BATSS' ingredient '`ref`' corresponding to a \link[base]{logical} vector of the same length and order as `'prob0'` (i.e., number of arms initially included in the study including the reference group)) and indicating which group is the reference one.
#' @param active the 'BATSS' ingredient '`active`' corresponding to a \link[base]{logical} vector of the same length and order as `'prob0'` (i.e., number of arms initially included in the study including the reference group)) and  indicating if each arm is active at the look of interest.
#' @param gamma a scaling factor (to be defined in `RAR.arm.control`).
#' @param eta a scaling factor (to be defined in `RAR.arm.control`).
#' @param nu a scaling factor (to be defined in `RAR.arm.control`).
#' @return [RAR.trippa] returns a vector of probabilities with length of active.
#' @export
RAR.trippa = function(posterior,n,N,ref,active,gamma,eta,nu){
  g = sum(active)
  h = gamma*(sum(n)/N)^eta
  prob = rep(NA,g)

  # reference
  prob[1] = (exp(max(n[!ref])-n[ref])^nu)/(g-1)
  # targets
  prob[2:g] = (posterior^h)/(sum(posterior^h))
  #
  prob
}

#' @name RAR.optimal
#' @title 'Optimal' control allocation
#' @description technically not response adaptive but keeps allocation ratio to control at the square root of active intervention arms
#' @param active the 'BATSS' ingredient '`active`' corresponding to a \link[base]{logical} vector of the same length and order as `'prob0'` (i.e., number of arms initially included in the study including the reference group)) and  indicating if each arm is active at the look of interest.
#' @return [RAR.optimal] returns a vector of probabilities with length of active.
#' @export
RAR.optimal = function(active){
  K    = sum(active)-1
  tot  = K+sqrt(K)
  prob = c(sqrt(K), rep(1,K))/tot
  prob
}

Try the BATSS package in your browser

Any scripts or data that you put into this service are public.

BATSS documentation built on Aug. 28, 2025, 1:09 a.m.