Description Usage Arguments Value Author(s) Examples
View source: R/Uncertainty_FPK.R
This function plots likelihood profiles around the MLEs of paramaters and returns 95% confidence intervals.
1 2  | Uncertainty_FPK(fit, tree, trait, Npts = 50, effort_uncertainty = 100, 
  scope_a = c(-10, 10), scope_b = c(-10, 10), scope_c = c(-10, 10))
 | 
fit | 
 An FPK model fit, as returned by find.mle_FPK.  | 
tree | 
 The phylogenetic tree.  | 
trait | 
 The named trait vector  | 
Npts | 
 The number of points used to discretize the trait interval.  | 
effort_uncertainty | 
 Determines the number of values at which the likelihood should be calculated for each parameter.  | 
scope_a | 
 Extreme values that should be investigated for parameter a.  | 
scope_b | 
 Extreme values that should be investigated for parameter b.  | 
scope_c | 
 Extreme values that should be investigated for parameter c.  | 
A list with 95% confidence intervals for all parameters.
F. C. Boucher
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  | ## Not run: 
# Simulate data: tree + continuous trait
library(geiger)
tree=sim.bdtree(stop='taxa',n=10) # tree with few tips for quick tests
tree$edge.length=100*tree$edge.length/max(branching.times(tree)) # rescale the tree 
# Simulate trait evolving on a macroevolutionary landscape with two peaks of equal heights
x=seq(from=-1.5,to=1.5,length.out=100)
bounds=c(min(x),max(x)) # the bounds we use for simulating: for technical purposes only
V6=10*(x^4-0.5*(x^2)+0.*x) # this is the evolutionary potential: it has two wells
TRAIT= Sim_FPK(tree,x0=0,V=V6,sigma=10,bounds=c(-5, 5)) 
# fit the FPK model: 
ll_FPK4=lnL_FPK(tree,TRAIT,Npts=25,a=NULL,b=NULL,c=NULL) # the full model
fit4=find.mle_FPK(model=ll_FPK4)
# Measure uncertainty on model parameters
Uncertainty_FPK(fit=fit4,tree,trait=TRAIT,Npts=25,effort_uncertainty= 100,
  scope_a=c(-1,10),scope_b=c(-5,5),scope_c=c(-2,2))
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.