inst/doc/BLA.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup--------------------------------------------------------------------
library(BLA)

## ----eval=FALSE, echo=TRUE----------------------------------------------------
#  library(aplpack)

## ----echo=FALSE---------------------------------------------------------------
original_scipen <- getOption("scipen")
options(scipen = 999)#  disabling scientific notation i.e 1.1*10^2

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------
head(soil)


## -----------------------------------------------------------------------------
x<-soil$P
y<-soil$yield

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------
summastat(x)

summastat(y)

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------
summastat(log(x))

x<-log(x) # transforms soil P to log 

## ----eval=FALSE, echo=TRUE,fig.align='center', fig.dim=c(4,4)-----------------
#  
#  vals_ur<-matrix(NA,length(x),2) #Create a matrix with x and y as required by the bag plot function
#  vals_ur[,1]<-x
#  vals_ur[,2]<-y
#  
#  bag<-bagplot(vals_ur, ylim=c(0,20), show.whiskers =F,create.plot = TRUE) # run the bagplot function
#  legend("topright", c("bag","loop","outliers", "d.median"),
#          pch = c(15,15,16,8),col=c("blue","lightblue","red","red"),
#         cex=0.7)
#  
#  vals<-rbind(bag$pxy.bag,bag$pxy.outer) # to remove outliers, select points in the bag and loop only
#  

## ----eval=TRUE, echo=FALSE,fig.align='center', fig.dim=c(4,4)-----------------

# for vignette purpose only
x<-log(SoilP$P) # since we required a transformation
y<-SoilP$yield
vals <- data.frame(x,y)

## -----------------------------------------------------------------------------
x<-vals[,1]
y<-vals[,2]

## ----fig.align='center', fig.dim=c(5,4)---------------------------------------
bound_test<-expl_boundary(x,y,shells = 10, simulations = 100, 
                          pch=16, col="grey") # 

bound_test

## ----eval=FALSE---------------------------------------------------------------
#  ?bolides

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------
bolides(x,y,model = "explore", pch=16, col="grey")

## ----eval=FALSE---------------------------------------------------------------
#  ?startValues()

## ----eval=FALSE---------------------------------------------------------------
#  
#  startValues("trapezium") # then select the five points at the edge of the dataset that make up the trapezium model in order of increasing x values.

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------

start<-c(4,3,14,104,-22) # start values is a vector of five consists of intercept, slope, plateau yield, intercept2 and slope2. 

model1<-bolides(x,y, start = start,model = "trapezium",
                xlab=expression("Phosphorus/ln(mg L"^-1*")"), 
                ylab=expression("Yield/ t ha"^-1), pch=16, 
                col="grey", bp_col="grey")

model1


## -----------------------------------------------------------------------------

P<-c(4.5, 7.4, 12.2, 20.1, 54.5)
P_log<-log(P)

Max_Response<-predictBL(model1, P_log) # the argument inputs are the boundary line model and the independent values (in this case P_log)

Max_Response

## ----eval=FALSE---------------------------------------------------------------
#  ?blbin

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------
bins<-c(1.61,4.74,0.313) 

blbin(x,y, bins,model = "explore", tau=0.99, pch=16, col="grey")

## ----eval=FALSE---------------------------------------------------------------
#  startValues("trapezium")

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------

start<-c(4.75, 3.23, 13.3, 24.87,-2.95 )

model2<-blbin(x,y, bins,start = start,model = "trapezium", 
              tau=0.99, 
              ylab=expression("t ha"^-1), 
              xlab=expression("Phosphorus/ln(mg L"^-1*")"), 
              pch=16, col="grey", bp_col="grey")

model2

## ----eval=FALSE---------------------------------------------------------------
#  ?blqr

## ----fig.align='center', fig.dim=c(4,4), eval=FALSE---------------------------
#  
#  plot(x,y)
#  
#  startValues("trapezium")

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------

start<-c(4,3,13.5,31,-4.5)

model3<-blqr(x,y, start = start, model = "trapezium",
             xlab=expression("Phosphorus/ mg L"^-1), 
             ylab=expression("Phosphorus/ln(mg L"^-1*")"),
             pch=16,tau=0.99, col="grey") # may take a few seconds to ran

model3

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------
bolides(x,y,model="explore", pch=16, col="grey")

## -----------------------------------------------------------------------------
custom_function<-function(x,a,b,c){
  y<- a - b*(x-c)^2
}

## ----fig.align='center', fig.dim=c(4,4)---------------------------------------
start<-c(13.5,3,3.3)  

model4<-bolides(x,y, start = start,model = "other",
                equation=custom_function,
                xlab=expression("Phosphorus/mg L"^-1), 
                ylab=expression("Phosphorus/ln(mg L"^-1*")"), 
                pch=16, ylim=c(3.8,14.5), col="grey",bp_col="grey")

model4

## ----echo=FALSE---------------------------------------------------------------
options(scipen = original_scipen)# Restore the original scipen value

Try the BLA package in your browser

Any scripts or data that you put into this service are public.

BLA documentation built on May 29, 2024, 10:32 a.m.