Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(BMEmapping)
## -----------------------------------------------------------------------------
data("utsnowload")
head(utsnowload)
## ----eval=FALSE---------------------------------------------------------------
# ?utsnowload
## -----------------------------------------------------------------------------
# prediction location
x <- utsnowload[228:232, c("latitude", "longitude")]
x
## -----------------------------------------------------------------------------
# hard data locations
ch <- utsnowload[1:67, c("latitude", "longitude")]
# soft data locations
cs <- utsnowload[68:227, c("latitude", "longitude")]
# hard data values
zh <- utsnowload[1:67, c("hard")]
# lower bounds
a <- utsnowload[68:227, c("lower")]
# upper bounds
b <- utsnowload[68:227, c("upper")]
## -----------------------------------------------------------------------------
# variogram model and parameters
model <- "exp"
nugget <- 0.0953
sill <- 0.3639
range <- 1.0787
## ----fig.width = 4, fig.height = 4.5, fig.align='center'----------------------
prob_zk(x[1,], ch, cs, zh, a, b, model, nugget, sill, range, plot = TRUE)
## -----------------------------------------------------------------------------
# posterior mode
bme_predict(x, ch, cs, zh, a, b, model, nugget, sill, range, type = "mode")
# posterior mean
bme_predict(x, ch, cs, zh, a, b, model, nugget, sill, range, type = "mean")
## ----eval=FALSE---------------------------------------------------------------
# bme_cv(ch, cs, zh, a, b, model, nugget, sill, range, type = "mean")
#
# #> $results
# #> latitude longitude observed mean variance residual fold
# #> 1 40.44 -112.24 0.09696012 -0.2065 0.3598 0.3035 1
# #> 2 39.94 -112.41 0.12258678 -0.3423 0.3427 0.4649 2
# #> 3 37.51 -113.40 -0.02302358 -0.0726 0.3514 0.0496 3
# #> 4 37.49 -113.85 0.50354362 -0.1631 0.3900 0.6666 4
# #> 5 39.31 -109.53 -0.68611327 -0.2303 0.4444 -0.4558 5
# #> 6 40.72 -109.54 -0.53000397 -0.7366 0.3024 0.2066 6
# #> 7 40.61 -109.89 -0.71923519 -0.8916 0.3152 0.1724 7
# #> 8 40.91 -109.96 -1.31503404 -1.0151 0.2933 -0.2999 8
# #> 9 40.74 -109.67 -0.94879597 -0.7044 0.2795 -0.2444 9
# #> 10 40.92 -110.19 -1.39798035 -1.0139 0.3175 -0.3841 10
# #> 11 40.95 -110.48 -1.21900906 -0.9611 0.2218 -0.2579 11
# #> 12 40.60 -110.43 -1.24787225 -0.8706 0.2713 -0.3773 12
# #> 13 40.55 -110.69 -0.55027484 -0.6954 0.2599 0.1451 13
# #> 14 40.91 -110.50 -1.06708711 -1.0866 0.2119 0.0195 14
# #> 15 40.72 -110.47 -1.14044998 -0.9950 0.2578 -0.1454 15
# #> 16 40.58 -110.59 -0.94551554 -0.8009 0.2416 -0.1446 16
# #> 17 40.86 -110.80 -0.83840015 -0.5465 0.2681 -0.2919 17
# #> 18 40.77 -110.01 -1.24671792 -1.0531 0.2734 -0.1936 18
# #> 19 40.80 -110.88 -0.65036211 -0.4763 0.2321 -0.1741 19
# #> 20 40.68 -110.95 -0.37127802 -0.4399 0.2586 0.0686 20
# #> 21 39.89 -110.75 -0.80367306 -0.3605 0.3668 -0.4432 21
# #> 22 39.96 -110.99 -0.54230365 -0.2677 0.2912 -0.2746 22
# #> 23 41.38 -111.94 0.94099563 0.7969 0.1807 0.1441 23
# #> 24 41.31 -111.45 0.24796667 0.0273 0.2867 0.2207 24
# #> 25 41.41 -111.83 0.47642403 0.6856 0.2460 -0.2092 25
# #> 26 41.38 -111.92 1.25233814 0.6507 0.1735 0.6016 26
# #> 27 41.90 -111.63 0.61655171 0.0339 0.3443 0.5827 27
# #> 28 41.68 -111.42 0.18443361 -0.0173 0.3117 0.2017 28
# #> 29 41.41 -111.54 0.11223798 0.2098 0.2246 -0.0976 29
# #> 30 41.47 -111.50 0.10561343 0.1328 0.2329 -0.0272 30
# #> 31 40.85 -111.05 -0.10690304 -0.3160 0.1908 0.2091 31
# #> 32 40.89 -111.07 -0.29946212 -0.2456 0.2007 -0.0539 32
# #> 33 40.16 -111.21 0.00344554 -0.1387 0.3134 0.1421 33
# #> 34 40.99 -111.82 0.78786432 0.0856 0.2765 0.7023 34
# #> 35 40.43 -111.62 0.39822325 0.0749 0.2780 0.3233 35
# #> 36 40.36 -111.09 -0.24414027 -0.2252 0.3183 -0.0189 36
# #> 37 40.61 -111.10 -0.52669066 -0.2218 0.2720 -0.3049 37
# #> 38 40.76 -111.63 0.14568497 0.2201 0.2832 -0.0744 38
# #> 39 40.79 -111.12 -0.10923301 -0.3191 0.2304 0.2099 39
# #> 40 39.68 -111.32 -0.08382941 -0.2960 0.2652 0.2122 40
# #> 41 39.31 -111.43 -0.78984433 -0.4473 0.2903 -0.3425 41
# #> 42 39.14 -111.56 -0.38648680 -0.6416 0.2396 0.2551 42
# #> 43 39.05 -111.47 -0.57739062 -0.5946 0.2228 0.0172 43
# #> 44 39.87 -111.28 -0.22947205 -0.0731 0.1994 -0.1564 44
# #> 45 39.89 -111.25 -0.03805984 -0.1976 0.2003 0.1595 45
# #> 46 39.45 -111.27 -0.42606551 -0.4756 0.3043 0.0495 46
# #> 47 39.13 -111.44 -0.52777166 -0.5962 0.2269 0.0684 47
# #> 48 39.01 -111.58 -0.81486819 -0.4973 0.2491 -0.3176 48
# #> 49 39.93 -111.63 0.06849776 -0.0867 0.2983 0.1552 49
# #> 50 38.77 -111.68 -0.68746363 -0.6272 0.1908 -0.0603 50
# #> 51 38.68 -111.60 -1.04793061 -0.6279 0.2834 -0.4200 51
# #> 52 38.21 -111.48 -1.40848147 -0.6012 0.3933 -0.8073 52
# #> 53 38.80 -111.68 -0.43759896 -0.7310 0.1964 0.2934 53
# #> 54 37.84 -111.88 -0.73581358 -0.4816 0.4018 -0.2542 54
# #> 55 38.51 -112.02 -0.90807705 -0.7382 0.3365 -0.1699 55
# #> 56 38.48 -112.39 -0.67118202 -0.6298 0.2905 -0.0414 56
# #> 57 38.30 -112.36 -0.76527983 -0.5643 0.2435 -0.2010 57
# #> 58 38.30 -112.44 -0.51835705 -0.5553 0.2232 0.0369 58
# #> 59 38.88 -112.25 -0.24704072 -0.4462 0.3438 0.1992 59
# #> 60 37.58 -112.90 -0.42302609 -0.3781 0.2050 -0.0449 60
# #> 61 37.49 -112.58 0.00732065 -0.1742 0.2318 0.1815 61
# #> 62 37.49 -112.51 0.02427501 -0.1263 0.2205 0.1506 62
# #> 63 37.66 -112.74 -0.76376457 -0.3345 0.2746 -0.4293 63
# #> 64 37.57 -112.84 -0.28791382 -0.4501 0.2057 0.1622 64
# #> 65 37.53 -113.05 -0.07280592 -0.3232 0.2927 0.2504 65
# #> 66 38.48 -109.27 -0.90950964 -0.3653 0.3869 -0.5442 66
# #> 67 37.81 -109.49 -0.39635792 -0.3522 0.3680 -0.0442 67
# #>
# #> $metrics
# #> ME MAE RMSE
# #> 1 -0.0102 0.2378 0.2953
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.