View source: R/40_priors_setup.R
| bv_priors | R Documentation |
Function to provide priors and their parameters to bvar. Used
for adjusting the parameters treated as hyperparameters, the Minnesota prior
and adding various dummy priors through the ellipsis parameter.
Note that treating \psi (psi) as a hyperparameter in a
model with many variables may lead to very low acceptance rates and thus
hinder convergence.
bv_priors(hyper = "auto", mn = bv_mn(), ...)
hyper |
Character vector. Used to specify the parameters to be treated
as hyperparameters. May also be set to |
mn |
List of class |
... |
Optional lists of class |
Returns a named list of class bv_priors with options for
bvar.
bv_mn; bv_dummy
# Extend the hyperparameters to the full Minnesota prior
bv_priors(hyper = c("lambda", "alpha", "psi"))
# Alternatively
# bv_priors("full")
# Add a dummy prior via `bv_dummy()`
# Re-create the single-unit-root prior
add_sur <- function(Y, lags, par) {
sur <- if(lags == 1) {Y[1, ] / par} else {
colMeans(Y[1:lags, ]) / par
}
Y_sur <- sur
X_sur <- c(1 / par, rep(sur, lags))
return(list("Y" = Y_sur, "X" = X_sur))
}
sur <- bv_dummy(mode = 1, sd = 1, min = 0.0001, max = 50, fun = add_sur)
# Add the new prior
bv_priors(hyper = "auto", sur = sur)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.