Description Usage Arguments Examples
Plot method for the estimation results of the regression model.
1 2 3 4  | 
x | 
 est.Regression class, created with method   | 
par.options | 
 list of options for function par()  | 
style | 
 one out of "chains", "acf", "density"  | 
par2plot | 
 logical vector, which parameters to be plotted, order: (φ, γ^2)  | 
reduced | 
 logical (1), if TRUE, the chains are thinned and burn-in phase is dropped  | 
thinning | 
 thinning rate, if missing, the proposed one by the estimation procedure is taken  | 
burnIn | 
 burn-in phase, if missing, the proposed one by the estimation procedure is taken  | 
priorMeans | 
 logical(1), if TRUE (default), prior means are marked with a line  | 
col.priorMean | 
 color of the prior mean line, default 2  | 
lty.priorMean | 
 linetype of the prior mean line, default 1  | 
... | 
 optional plot parameters  | 
1 2 3 4 5 6 7 8 9 10 11  | model <- set.to.class("Regression", fun = function(phi, t) phi[1]*t + phi[2],
    parameter = list(phi = c(1, 2), gamma2 = 0.1))
data <- simulate(model, t = seq(0, 1, by = 0.01), plot.series = TRUE)
est <- estimate(model, t = seq(0, 1, by = 0.01), data, 1000)  # nMCMC small for example
plot(est)
plot(est, burnIn = 100, thinning = 2, reduced = TRUE)
plot(est, par.options = list(mar = c(5, 4.5, 4, 2) + 0.1, mfrow = c(3,1)), xlab = "iteration")
plot(est, style = "acf", main = "", par2plot = c(TRUE, TRUE, FALSE))
plot(est, style = "density", lwd = 2, priorMean = FALSE)
plot(est, style = "density", col.priorMean = 1, lty.priorMean = 2, main = "posterior")
plot(est, style = "acf", par.options = list(), main = "", par2plot = c(FALSE, FALSE, TRUE))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.