Nothing
## This file is modified from the source file of the function BART::pwbart().
## See below for the copyright of the CRAN R package 'BART'.
## BART: Bayesian Additive Regression Trees
## Copyright (C) 2018 Robert McCulloch and Rodney Sparapani
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
## You should have received a copy of the GNU General Public License
## along with this program; if not, a copy is available at
## https://www.R-project.org/Licenses/GPL-2
#' Predicting new observations with a previously fitted BART model
#'
#' BART is a Bayesian approach to nonparametric function estimation and inference using a sum of trees.\cr
#' For a continuous response \eqn{y} and a \eqn{p-}dimensional vector of predictors \eqn{x = (x_1, ..., x_p)'},
#' BART models \eqn{y} and \eqn{x} using \deqn{y = f(x) + \epsilon,}
#' where \eqn{f} is a sum of Bayesian regression trees function and \eqn{\epsilon ~ N(0, \sigma^2)}.\cr
#' For a binary response \eqn{y}, probit BART models \eqn{y} and \eqn{x} using \deqn{P(Y=1|x)=\Phi[f(x)],}
#' where \eqn{\Phi} is the CDF of the standard normal distribution and \eqn{f} is a sum of Bayesian regression
#' trees function.\cr
#' The function \code{pwbart()} is inherited from the CRAN R package 'BART'.
#'
#' @param x.test A matrix or a data frame of predictors values for prediction with each row corresponding to an observation
#' and each column corresponding to a predictor.
#' @param treedraws A list which is the \code{$treedraws} returned from the function \code{wbart()} or \code{pbart()}.
#' @param rm.const A vector which is the \code{$rm.const} returned from the function \code{wbart()} or \code{pbart()}.
#' @param mu Mean to add on to \code{y} prediction.
#' @param mc.cores The number of threads to utilize.
#' @param transposed A Boolean argument indicating whether the matrix \code{x.test} is transposed. When
#' running \code{pwbart()} or \code{mc.pwbart()} in parallel, it is more memory-efficient to transpose \code{x.test} prior to
#' calling the internal versions of these functions.
#' @param dodraws A Boolean argument indicating whether to return the draws themselves (the default), or whether to return the
#' mean of the draws as specified by \code{dodraws=FALSE}.
#' @param verbose A Boolean argument indicating whether any messages are printed out.
#'
#' @return Returns the predictions for \code{x.test}. If \code{dodraws=TRUE}, return a matrix of prediction with each row
#' corresponding to a draw and each column corresponding to a new observation; if \code{dodraws=FALSE}, return a vector of
#' predictions which are the mean of the draws.
#'
#' @author Chuji Luo: \email{cjluo@ufl.edu} and Michael J. Daniels: \email{daniels@ufl.edu}.
#' @references
#' Chipman, H. A., George, E. I. and McCulloch, R. E. (2010).
#' "BART: Bayesian additive regression trees."
#' \emph{Ann. Appl. Stat.} \strong{4} 266--298.
#'
#' Linero, A. R. (2018).
#' "Bayesian regression trees for high-dimensional prediction and variable selection."
#' \emph{J. Amer. Statist. Assoc.} \strong{113} 626--636.
#'
#' Luo, C. and Daniels, M. J. (2021)
#' "Variable Selection Using Bayesian Additive Regression Trees."
#' \emph{arXiv preprint arXiv:2112.13998}.
#'
#' Rockova V, Saha E (2019).
#' βOn theory for BART.β
#' \emph{In The 22nd International Conference on Artificial Intelligence and Statistics} (pp. 2839β2848). PMLR.
#'
#' Sparapani, R., Spanbauer, C. and McCulloch, R. (2021).
#' "Nonparametric machine learning and efficient computation with bayesian additive regression trees: the BART R package."
#' \emph{J. Stat. Softw.} \strong{97} 1--66.
#' @seealso
#' \code{\link{wbart}}, \code{\link{pbart}} and \code{\link{mc.pwbart}}.
#' @examples
#' ## simulate data (Scenario C.M.1. in Luo and Daniels (2021))
#' set.seed(123)
#' data = mixone(100, 10, 1, FALSE)
#' ## run wbart() function
#' res = wbart(data$X, data$Y, ntree=10, nskip=100, ndpost=100)
#' ## test pwbart() function
#' x.test = mixone(5, 10, 1, FALSE)$X
#' pred = pwbart(x.test, res$treedraws, res$rm.const, mu=mean(data$Y))
pwbart = function(x.test, #x matrix to predict at
treedraws, #$treedraws from wbart or pbart
rm.const, #$rm.const from wbart or pbart
mu=0, #mean to add on
mc.cores=1L, #thread count
transposed=FALSE,
dodraws=TRUE,
verbose=FALSE
){
if(!transposed) x.test = t(bartModelMatrix(x.test)[ , rm.const])
p = length(treedraws$cutpoints)
if(p != nrow(x.test))
stop(paste0('The number of columns in x.test must be equal to ', p))
res = .Call("cpwbart",
treedraws, #trees list
x.test, #the test x
mc.cores, #thread count
verbose
)
if(dodraws) return(res$yhat.test+mu)
else return(apply(res$yhat.test, 2, mean)+mu)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.