Nothing
# Read d_sim_binom_cov data, which is exported to the package
d_sim_binom_cov <- d_sim_binom_cov
id_to_sample <- seq(1, max(d_sim_binom_cov$ID), by = 1)
id_to_sample2 <- seq(1, max(d_sim_binom_cov$ID), by = 5)
df_er_ae_hgly2 <-
d_sim_binom_cov |>
dplyr::filter(
AETYPE == "hgly2",
ID %in% id_to_sample
) |>
dplyr::mutate(
AUCss_1000 = AUCss / 1000, BAGE_10 = BAGE / 10,
BWT_10 = BWT / 10, BHBA1C_5 = BHBA1C / 5
)
df_er_dr2 <-
d_sim_binom_cov |>
dplyr::filter(
AETYPE == "dr2",
ID %in% id_to_sample
) |>
dplyr::mutate(
AUCss_1000 = AUCss / 1000, BAGE_10 = BAGE / 10,
BWT_10 = BWT / 10
)
var_resp <- "AEFLAG"
var_exp_candidates <- c("AUCss_1000", "Cmaxss", "Cminss")
# develop models --------------------------------------------------------------
set.seed(1234)
ermod_bin <- dev_ermod_bin(
data = df_er_ae_hgly2,
var_resp = var_resp,
var_exposure = "AUCss_1000",
var_cov = NULL,
verbosity_level = 0,
# Below option to make the test fast
chains = 2, iter = 1000
)
set.seed(1234)
ermod_bin_w_cov <- dev_ermod_bin(
data = df_er_ae_hgly2,
var_resp = var_resp,
var_exposure = "AUCss_1000",
var_cov = "BHBA1C_5",
verbosity_level = 0,
# Below option to make the test fast
chains = 2, iter = 1000
)
set.seed(1234)
ermod_bin_exp_sel <-
dev_ermod_bin_exp_sel(
data = df_er_ae_hgly2,
var_resp = var_resp,
var_exp_candidates = var_exp_candidates,
verbosity_level = 0,
# Below option to make the test fast
chains = 2, iter = 1000
)
# Simulate responses ----------------------------------------------------------
ersim_curve <- sim_er_curve(
ermod_bin,
n_draws_sim = 200,
num_exposures = 31,
output_type = "draws"
)
ersim_curve_med_qi <- sim_er_curve(
ermod_bin,
n_draws_sim = 200,
num_exposures = 31,
output_type = "median_qi",
qi_width = 0.95
)
ersim_curve_2_med_qi <- sim_er_curve(
ermod_bin_w_cov,
data_cov = dplyr::tibble(BHBA1C_5 = 8),
num_exposures = 31,
output_type = "median_qi",
qi_width = 0.95
)
ersim_curve_3_med_qi <- sim_er_curve(
ermod_bin_w_cov,
data_cov = dplyr::tibble(BHBA1C_5 = c(4, 8)),
num_exposures = 31,
output_type = "median_qi",
qi_width = 0.95
)
ersim_new_exp_marg_med_qi <- sim_er_new_exp_marg(
ermod_bin_w_cov,
exposure_to_sim_vec = c(2, 2:6),
data_cov = dplyr::tibble(BHBA1C_5 = 4:10, AUCss_1000 = 4:10),
n_subj_sim = NULL,
n_draws_sim = 200,
output_type = "median_qi"
)
# Test ------------------------------------------------------------------------
test_that("plot_er.ermod", {
if (requireNamespace("xgxr")) {
g1 <- plot_er(ermod_bin, show_orig_data = TRUE)
g2 <- plot_er(ermod_bin_w_cov,
show_orig_data = TRUE, marginal = TRUE,
n_draws_sim = 50, num_exposures = 31, exposure_range = c(1, 3)
)
expect_equal(nrow(g1$data), 51)
expect_equal(g2$data$AUCss_1000, seq(1, 3, length.out = 31))
}
plot_er(ermod_bin_w_cov) |>
expect_error("Model has covariate\\(s\\), and you cannot use this")
})
test_that("plot_er.ersim", {
g1 <- plot_er(ersim_curve)
g2 <- plot_er(ersim_curve_med_qi)
if (requireNamespace("xgxr")) {
g3 <- plot_er(ersim_curve_med_qi, show_orig_data = TRUE)
}
expect_equal(nrow(g1$data), 31) # Make sure sim_er_curve worked fine
expect_equal(g2$labels$x, "AUCss_1000")
expect_silent(plot(g1))
if (requireNamespace("xgxr")) {
plot_er(ersim_curve_2_med_qi, show_orig_data = TRUE) |>
expect_warning("Model has covariate\\(s\\), and only one covariate data")
}
plot_er(ersim_curve_3_med_qi) |>
expect_error("Model has covariate\\(s\\) and multiple covariate data rows")
})
test_that("plot_er with groups", {
if (requireNamespace("xgxr")) {
plot_er(ermod_bin,
show_orig_data = TRUE,
options_orig_data = list(var_group = "AUCss_1000")
) |>
expect_error("Column `AUCss_1000` is numeric and has > 10 unique values")
plot_er(ermod_bin,
show_orig_data = TRUE,
options_orig_data = list(var_group = "Dose_mg")
) |>
expect_silent()
plot_er(ermod_bin,
show_orig_data = TRUE,
options_orig_data = list(var_group = "Dose_mg", add_boxplot = TRUE)
) |>
expect_silent()
plot_er(ermod_bin,
show_orig_data = TRUE,
options_orig_data = list(add_boxplot = TRUE)
) |>
expect_silent()
}
})
test_that("plot_er add CI", {
plot_er(ermod_bin,
show_coef_exp = TRUE,
options_coef_exp = list(size = 6)
) |>
expect_silent()
})
test_that("plot_er show caption", {
if (requireNamespace("xgxr")) {
plot_er(
ersim_curve_med_qi,
show_orig_data = TRUE,
show_coef_exp = TRUE,
show_caption = TRUE,
options_coef_exp = list(size = 6),
options_caption = list(orig_data = TRUE, orig_data_summary = TRUE)
) |>
expect_silent()
}
plot_er(ermod_bin,
show_coef_exp = TRUE,
show_caption = TRUE,
options_coef_exp = list(size = 6),
options_caption = list(coef_exp = TRUE)
) |>
expect_silent()
})
test_that("plot_er_gof", {
if (requireNamespace("xgxr")) {
plot_er_gof(ermod_bin) |>
expect_silent()
plot_er_gof(ermod_bin, var_group = "Dose_mg") |>
expect_silent()
plot_er_gof(ermod_bin, show_coef_exp = TRUE, show_caption = TRUE) |>
expect_silent()
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.