Description Usage Arguments Value Examples
This function fits a Bayesian grouped weighted quantile sum (BGWQS) regression model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14  | 
y | 
 A vector containing outcomes.  | 
x | 
 A matrix of component data.  | 
z | 
 A vector or matrix of controlling covariates.  | 
x.s | 
 A vector of the number of components in each index.  | 
n.quantiles | 
 The number of quantiles to apply to the component data.  | 
working.dir | 
 A file path to the directory.  | 
n.chains | 
 The number of Markov chains; must be a positive integer.  | 
n.iter | 
 The number of total iterations per chain, including burn in.  | 
n.burnin | 
 The number of iterations to discard at the beginning.  | 
n.thin | 
 The thinning rate; must be a positive integer.  | 
n.adapt | 
 The number of adaption iterations.  | 
DIC | 
 Logical; whether or not the user desires the function to return DIC.  | 
A list which includes BUGS output, sample chains post-burnin, and convergence test results.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  | ## Not run: 
data("simdata")
group_list <- list(c("pcb_118", "pcb_138", "pcb_153", "pcb_180", "pcb_192"),
                   c("as", "cu", "pb", "sn"),
                   c("carbaryl", "propoxur", "methoxychlor", "diazinon", "chlorpyrifos"))
x.s <- make.x.s(simdata, 3, group_list)
X <- make.X(simdata, 3, group_list)
Y <- simdata$Y
work_dir <- tempdir()
results <- bgwqs.fit(y = Y, x = X, x.s = x.s, n.quantiles=4,
                     working.dir = work_dir,
                     n.chains = 1, n.iter = 10000, n.burnin = 5000, n.thin = 1, n.adapt = 500)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.