Nothing
# Simulate a sample from a Mallows model with the Kendall distance
n_items <- 5
mydata <- sample_mallows(
n_samples = 100,
rho0 = 1:n_items,
alpha0 = 10,
metric = "kendall")
# Compute the likelihood and log-likelihood values under the true model...
get_mallows_loglik(
rho = rbind(1:n_items, 1:n_items),
alpha = c(10, 10),
weights = c(0.5, 0.5),
metric = "kendall",
rankings = mydata,
log = FALSE
)
get_mallows_loglik(
rho = rbind(1:n_items, 1:n_items),
alpha = c(10, 10),
weights = c(0.5, 0.5),
metric = "kendall",
rankings = mydata,
log = TRUE
)
# or equivalently, by using the frequency distribution
freq_distr <- compute_observation_frequency(mydata)
get_mallows_loglik(
rho = rbind(1:n_items, 1:n_items),
alpha = c(10, 10),
weights = c(0.5, 0.5),
metric = "kendall",
rankings = freq_distr[, 1:n_items],
observation_frequency = freq_distr[, n_items + 1],
log = FALSE
)
get_mallows_loglik(
rho = rbind(1:n_items, 1:n_items),
alpha = c(10, 10),
weights = c(0.5, 0.5),
metric = "kendall",
rankings = freq_distr[, 1:n_items],
observation_frequency = freq_distr[, n_items + 1],
log = TRUE
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.