Nothing
test_that("compute_consensus fails properly", {
mod <- compute_mallows(
setup_rank_data(potato_visual),
compute_options = set_compute_options(nmc = 10)
)
expect_error(compute_consensus(mod), "Please specify the burnin")
burnin(mod) <- 2
expect_error(
compute_consensus(mod, parameter = "Rtilde"),
"For augmented ranks, please refit model"
)
dat <- potato_visual
dat[c(1, 13, 14, 23)] <- NA
mod <- compute_mallows(
setup_rank_data(dat),
compute_options = set_compute_options(nmc = 10, burnin = 2)
)
expect_error(
compute_consensus(mod, parameter = "Rtilde"),
"For augmented ranks, please refit"
)
})
test_that("compute_consensus.BayesMallows works", {
set.seed(1)
mod <- compute_mallows(
setup_rank_data(potato_visual),
compute_options = set_compute_options(nmc = 200, burnin = 100)
)
c1 <- compute_consensus(mod)
expect_gt(which(c1$item == "P16") - which(c1$item == "P12"), 0)
c2 <- compute_consensus(mod, type = "MAP")
expect_equal(length(unique(c2$probability)), 1)
mod <- compute_mallows(
setup_rank_data(preferences = beach_preferences),
compute_options = set_compute_options(nmc = 100, burnin = 50, save_aug = TRUE)
)
a1 <- compute_consensus(mod, parameter = "Rtilde", assessors = 2)
expect_equal(unique(a1$assessor), 2)
expect_equal(dim(a1), c(15, 4))
a2 <- compute_consensus(
mod,
parameter = "Rtilde", type = "MAP", assessors = 3
)
expect_equal(unique(a2$assessor), 3)
expect_equal(length(unique(a2$probability)), 1)
})
test_that("compute_consensus.SMCMallows works", {
set.seed(1)
data_first_batch <- potato_visual[1:4, ]
mod_init <- compute_mallows(
data = setup_rank_data(data_first_batch),
compute_options = set_compute_options(nmc = 200, burnin = 50)
)
data_second_batch <- potato_visual[5:8, ]
mod_second <- update_mallows(
model = mod_init,
new_data = setup_rank_data(rankings = data_second_batch),
smc_options = set_smc_options(n_particles = 30)
)
expect_equal(dim(compute_consensus(mod_second)), c(20, 4))
data_third_batch <- potato_visual[9:12, ]
mod_final <- update_mallows(
model = mod_second,
new_data = setup_rank_data(rankings = data_third_batch)
)
expect_error(
compute_consensus(mod_final, parameter = "Rtilde"),
"'arg' should be"
)
a1 <- compute_consensus(mod_final, type = "MAP")
expect_equal(length(unique(a1$probability)), 1)
a2 <- compute_consensus(mod_final, type = "CP")
expect_equal(dim(a2), c(20, 4))
mod <- sample_prior(
1000, ncol(sushi_rankings),
priors = set_priors(gamma = 2, lambda = .1)
)
for (i in seq_len(30)) {
mod <- update_mallows(
model = mod,
new_data = setup_rank_data(sushi_rankings[i, , drop = FALSE])
)
}
expect_equal(
compute_consensus(mod)$item,
c(
"fatty tuna", "shrimp", "salmon roe", "squid", "sea urchin",
"tuna", "tuna roll", "sea eel", "egg", "cucumber roll"
)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.