Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
# install package
# Recommended installation
# install.packages("BayesMoFo")
# Development version (use only if needed)
# install.packages("devtools")
# devtools::install_github("jstw1g09/Rpackage-BayesMoFo")
#load package
library(BayesMoFo)
## -----------------------------------------------------------------------------
data(uk_mortalitydata)
## -----------------------------------------------------------------------------
head(uk_mortalitydata, n = 20)
## ----echo = FALSE, eval = FALSE-----------------------------------------------
# death <- preparedata_fn(data_summarised[, c("Age", "Year", "Claim")],
# ages = 35:65, years = 2016:2020)
# expo <- preparedata_fn(data_summarised[, c("Age", "Year", "Exposure")],
# ages = 35:65, years = 2016:2020)
## -----------------------------------------------------------------------------
death <- preparedata_fn(uk_mortalitydata[, c("Age", "Year", "Deaths")],
ages = 30:60, years = 2000:2020)
expo <- preparedata_fn(uk_mortalitydata[, c("Age", "Year", "Exposures")],
ages = 30:60, years = 2000:2020)
## -----------------------------------------------------------------------------
data("dxt_array_product")
data("Ext_array_product")
# preview of death data the 1st insurance product called "ACI"
str(dxt_array_product["ACI",,,drop = FALSE])
## ----eval = FALSE-------------------------------------------------------------
#
# # inputting the data as a 3-way array
# death <- preparedata_fn(dxt_array_product["ACI",,,drop = FALSE], ages = 35:65, years = 2016:2020)
# expo <- preparedata_fn(Ext_array_product["ACI",,,drop = FALSE], ages = 35:65, years = 2016:2020)
#
# # specifying the name of the stratum to load using `strat_name`
# death <- preparedata_fn(dxt_array_product,strat_name="ACI", ages = 35:65, years = 2016:2020)
# expo <- preparedata_fn(Ext_array_product,strat_name="ACI", ages = 35:65, years = 2016:2020)
## -----------------------------------------------------------------------------
# preview of death data the 1st insurance product called "ACI"
str(dxt_array_product["ACI",,,drop = TRUE])
## ----eval = FALSE-------------------------------------------------------------
# death<-preparedata_fn(dxt_array_product["ACI",,,drop = TRUE],data_matrix=TRUE,ages=35:65)
# expo<-preparedata_fn(Ext_array_product["ACI",,,drop = TRUE],data_matrix=TRUE,ages=35:65)
## ----eval = FALSE-------------------------------------------------------------
# fitmodel <- runBayesMoFo(death, expo,
# models = c("LC",
# "CBD_M3",
# "APCI")
# )
## ----eval = FALSE-------------------------------------------------------------
# fitmodel <- fit_LC(death, expo)
## ----eval = FALSE-------------------------------------------------------------
# fitmodel <- runBayesMoFo(death, expo, models = "LC")
## ----eval = FALSE-------------------------------------------------------------
# fitmodel <- runBayesMoFo(death, expo,
# models = c("LC",
# "CBD_M3",
# "APCI"),
# family="poisson"
# )
## ----message = FALSE, warning = FALSE-----------------------------------------
fitmodel_forecast <- runBayesMoFo(death, expo,
models = c("LC",
"CBD_M3",
"APCI"),
forecast = TRUE,
h = 6,
n.chain = 2
)
## -----------------------------------------------------------------------------
fitmodel_forecast$best_model
fitmodel_forecast$worst_model
## -----------------------------------------------------------------------------
fitmodel_forecast$DIC
## ----eval = FALSE-------------------------------------------------------------
# fitmodel_forecast$result$best
# fitmodel_forecast$result$worst
## ----fig.width = 10, fig.height = 10------------------------------------------
plot_param_fn(fitmodel_forecast)
## ----eval = FALSE-------------------------------------------------------------
# plot_param_fn(fitmodel_forecast, pred_int = 0.80)
## ----fig.width = 10, fig.height = 10------------------------------------------
plot_param_fn(fitmodel_forecast, pred_int = 0.80, legends = FALSE)
## ----fig.width = 10, fig.height = 10------------------------------------------
plot_rates_fn(fitmodel_forecast)
## ----fig.width = 10, fig.height = 5-------------------------------------------
plot_rates_fn(fitmodel_forecast, plot_years = c(2016,2020,2024))
## ----fig.width = 10, fig.height = 5-------------------------------------------
plot_rates_fn(fitmodel_forecast, plot_type = "time", plot_ages = c(35,45,55))
## -----------------------------------------------------------------------------
summary_fitmodel<-summary_fn(fitmodel_forecast)
## ----eval = FALSE-------------------------------------------------------------
# #posterior means
# summary_fitmodel$rates_summary$mean
#
# #posterior standard deviations
# summary_fitmodel$rates_summary$std
## ----eval = FALSE-------------------------------------------------------------
# #posterior medians
# summary_fitmodel$rates_pn$median
#
# #lower quantiles
# summary_fitmodel$rates_pn$lower
#
# #upper quantiles
# summary_fitmodel$rates_pn$upper
## ----eval = FALSE-------------------------------------------------------------
# #posterior means
# summary_fitmodel$param_summary$mean
#
# #posterior standard deviations
# summary_fitmodel$param_summary$std
#
# #posterior medians
# summary_fitmodel$param_pn$median
#
# #lower quantiles
# summary_fitmodel$param_pn$lower
#
# #upper quantiles
# summary_fitmodel$param_pn$upper
## ----fig.width = 10, fig.height = 10------------------------------------------
diagnostics_rates_result<-converge_diag_rates_fn(fitmodel_forecast)
## -----------------------------------------------------------------------------
diagnostics_rates_result$ESS
## ----fig.width = 10, fig.height = 10------------------------------------------
converge_diag_rates_fn(fitmodel_forecast, plot_ages = c(35,45,55), plot_years = c(2016,2020,2024))
## ----eval = FALSE-------------------------------------------------------------
# #for only trace plots
# converge_diag_rates_fn(fitmodel_forecast, plot_ages = c(35,45,55), plot_years = c(2016,2020,2024), trace = TRUE, density = FALSE)
## ----fig.width = 10, fig.height = 10------------------------------------------
#for only acf plots
converge_diag_rates_fn(fitmodel_forecast, plot_ages = c(35,45,55), plot_years = c(2016,2020,2024), trace = FALSE, density = FALSE, acf_plot = TRUE)
## ----fig.width = 10, fig.height = 10------------------------------------------
diagnostics_param_result<-converge_diag_param_fn(fitmodel_forecast)
## -----------------------------------------------------------------------------
diagnostics_param_result$ESS
## ----fig.width = 10, fig.height = 10------------------------------------------
converge_diag_param_fn(fitmodel_forecast, plot_params = c("kappa","gamma","rho","phi","sigma2_kappa"))
## -----------------------------------------------------------------------------
fitmodel_forecast$result$best$param
## ----fig.width = 9, fig.height = 5--------------------------------------------
converge_diag_param_fn(fitmodel_forecast, plot_params = c("kappa[1,4]","gamma[1,2]"))
## -----------------------------------------------------------------------------
colnames(fitmodel_forecast$result$best$post_sample[[1]])[!startsWith(colnames(fitmodel_forecast$result$best$post_sample[[1]]),"q[")]
## ----eval = FALSE-------------------------------------------------------------
# #for only trace plots
# converge_diag_param_fn(fitmodel_forecast, plot_params = c("kappa[1,4]","gamma[1,2]"), trace = TRUE, density = FALSE)
## ----fig.width = 5, fig.height = 5--------------------------------------------
#for only acf plots
converge_diag_param_fn(fitmodel_forecast, plot_params = c("kappa[1,4]","gamma[1,2]"), trace = FALSE, density = FALSE, acf_plot = TRUE)
## ----fig.width = 9, fig.height = 5--------------------------------------------
converge_diag_result<-converge_diag_fn(fitmodel_forecast, plot_gelman = TRUE, plot_geweke = TRUE)
## -----------------------------------------------------------------------------
#Gelman's R
head(converge_diag_result$gelman_diag$psrf)
#Geweke's Z
head(converge_diag_result$geweke_diag$z)
#Heidel's Stationarity and Half-width tests
head(converge_diag_result$heidel_diag)
## -----------------------------------------------------------------------------
data(uk_deathscausedata)
head(uk_deathscausedata, n = 10)
## -----------------------------------------------------------------------------
death <- preparedata_fn(uk_deathscausedata[,c("Age","Year","Deaths","Cause")])
expo <- preparedata_fn(uk_deathscausedata[,c("Age","Year","Exposures","Cause")])
#or if require a subset of the data
death <- preparedata_fn(uk_deathscausedata[,c("Age","Year","Deaths","Cause")],
ages = seq(45,90,by=5), years = 2001:2020)
expo <- preparedata_fn(uk_deathscausedata[,c("Age","Year","Exposures","Cause")],
ages = seq(45,90,by=5), years = 2001:2020)
str(death)
str(expo)
## ----eval = FALSE-------------------------------------------------------------
# data("dxt_array_product");data("Ext_array_product")
# str(dxt_array_product) # 3D data array
#
# death<-preparedata_fn(dxt_array_product,ages=35:65)
# expo<-preparedata_fn(Ext_array_product,ages=35:65)
## ----message = FALSE, warning = FALSE-----------------------------------------
fitmodel_forecast <- runBayesMoFo(death, expo,
models = "MLiLee",
forecast = TRUE,
h = 5,
quiet = TRUE,
n.chain = 2
)
## ----eval = FALSE, echo = FALSE-----------------------------------------------
# fitmodel_forecast$best_model
# fitmodel_forecast$worst_model
# fitmodel_forecast$DIC
## ----fig.width = 10, fig.height = 10------------------------------------------
plot_param_fn(fitmodel_forecast)
## ----fig.width = 10, fig.height = 5-------------------------------------------
plot_rates_fn(fitmodel_forecast, plot_years = c(2005,2020,2025))
## ----fig.width = 10, fig.height = 5-------------------------------------------
plot_rates_fn(fitmodel_forecast, plot_type = "time", plot_ages = c(45,65,85))
## ----fig.width = 10, fig.height = 10------------------------------------------
diagnostics_param_result<-converge_diag_rates_fn(fitmodel_forecast, plot_ages = c(45,65,85), plot_years = c(2005,2020,2025))
## ----fig.width = 10, fig.height = 10------------------------------------------
#for only acf plots
converge_diag_rates_fn(fitmodel_forecast, plot_ages = c(45,65,85), plot_years = c(2005,2020,2025), trace = FALSE, density = FALSE, acf_plot = TRUE)
## -----------------------------------------------------------------------------
diagnostics_param_result$ESS
## ----fig.width = 10, fig.height = 10------------------------------------------
converge_diag_param_fn(fitmodel_forecast, plot_params = c("beta","kappa","rho","phi","sigma2_kappa"))
## -----------------------------------------------------------------------------
fitmodel_forecast$result$best$param
## ----fig.width = 9, fig.height = 5--------------------------------------------
converge_diag_param_fn(fitmodel_forecast, plot_params = c("beta[1,3]","kappa[2,4]"))
## -----------------------------------------------------------------------------
colnames(fitmodel_forecast$result$best$post_sample[[1]])[!startsWith(colnames(fitmodel_forecast$result$best$post_sample[[1]]),"q[")]
## ----eval= FALSE--------------------------------------------------------------
# #for only trace plots
# converge_diag_param_fn(fitmodel_forecast, plot_params = c("beta[1,3]","kappa[2,4]"), trace = TRUE, density = FALSE)
## ----fig.width = 5, fig.height = 5--------------------------------------------
#for only acf plots
converge_diag_param_fn(fitmodel_forecast, plot_params = c("beta[1,3]","kappa[2,4]"), trace = FALSE, density = FALSE, acf_plot = TRUE)
## ----eval= FALSE--------------------------------------------------------------
# converge_diag_result<-converge_diag_fn(fitmodel_forecast, plot_gelman = TRUE, plot_geweke = TRUE)
## ----eval= FALSE--------------------------------------------------------------
# #Gelman's R
# head(converge_diag_result$gelman_diag$psrf)
#
# #Geweke's Z
# head(converge_diag_result$geweke_diag$z)
#
# #Heidel's Stationarity and Half-width tests
# head(converge_diag_result$heidel_diag)
## ----eval = FALSE-------------------------------------------------------------
# fitmodel_forecast <- runBayesMoFo(death, expo,
# models = c("APCI_sharegamma",
# "RH_sharegamma"),
# forecast = TRUE,
# h = 5,
# quiet = TRUE
# )
## ----eval = FALSE-------------------------------------------------------------
# fitmodel_forecast$DIC
#
# fitmodel_forecast$best_model
#
# plot_param_fn(fitmodel_forecast)
## ----eval = FALSE-------------------------------------------------------------
#
# plot_rates_fn(fitmodel_forecast, plot_years = c(2005,2020,2025))
#
# plot_rates_fn(fitmodel_forecast, plot_type = "time", plot_ages = c(45,65,85))
#
## ----eval = FALSE-------------------------------------------------------------
# converge_diag_rates_fn(fitmodel_forecast, plot_ages = c(45,65,85), plot_years = c(2005,2020,2025))
#
# converge_diag_param_fn(fitmodel_forecast, plot_params = c("kappa","rho","phi","sigma2_kappa"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.