View source: R/BayesRobustProbitSummary.r
| BayesRobustProbitSummary | R Documentation |
It provides basic posterior summary statistics such as the posterior point and confidence interval estimates of parameters and the values of information criterion statistics for model comparison.
BayesRobustProbitSummary(object, digits = max(1L, getOption("digits") - 4L))
object |
output from the function |
digits |
rounds the values in its first argument to the specified number of significant digits. |
a list of posterior summary statistics and corresponding model information
## Not run:
library(BayesRGMM)
rm(list=ls(all=TRUE))
Fixed.Effs = c(-0.2, -0.3, 0.8, -0.4) #c(-0.2,-0.8, 1.0, -1.2)
P = length(Fixed.Effs)
q = 1 #number of random effects
T = 5 #time points
N = 100 #number of subjects
num.of.iter = 100 #number of iterations
HSD.para = c(-0.5, -0.3) #the parameters in HSD model
a = length(HSD.para)
w = array(runif(T*T*a), c(T, T, a)) #design matrix in HSD model
for(time.diff in 1:a)
w[, , time.diff] = 1*(as.matrix(dist(1:T, 1:T, method="manhattan"))
== time.diff)
#Generate a data with HSD model
HSD.sim.data = SimulatedDataGenerator(Num.of.Obs = N, Num.of.TimePoints = T,
Fixed.Effs = Fixed.Effs, Random.Effs = list(Sigma = 0.5*diag(1), df=3),
Cor.in.DesignMat = 0., Missing = list(Missing.Mechanism = 2,
RegCoefs = c(-1.5, 1.2)), Cor.Str = "HSD",
HSD.DesignMat.para = list(HSD.para = HSD.para, DesignMat = w))
hyper.params = list(
sigma2.beta = 1,
sigma2.delta = 1,
v.gamma = 5,
InvWishart.df = 5,
InvWishart.Lambda = diag(q) )
HSD.output = BayesRobustProbit(
fixed = as.formula(paste("y~-1+", paste0("x", 1:P, collapse="+"))),
data=HSD.sim.data$sim.data, random = ~ 1, Robustness=TRUE,
HS.model = ~IndTime1+IndTime2, subset = NULL, na.action='na.exclude',
hyper.params = hyper.params, num.of.iter = num.of.iter, Interactive =0)
BayesRobustProbitSummary(HSD.output)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.