inst/doc/BayesianLasso.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup--------------------------------------------------------------------
library(BayesianLasso)

## -----------------------------------------------------------------------------
# Simulate data
set.seed(123)
n <- 100
p <- 10
X <- matrix(rnorm(n * p), nrow = n)
beta <- c(rep(2, 3), rep(0, p - 3))
y <- X %*% beta + rnorm(n)

# Run the modified Hans sampler
output_Hans <- Modified_Hans_Gibbs(
               X = X, y = y, a1=2, b1=1, u1=2, v1=1, 
               nsamples=1000, beta_init= rep(1,10), lambda_init=1, sigma2_init=1, verbose=100)
colMeans(output_Hans$mBeta)

# Run the modified PC sampler
output_PC <- Modified_PC_Gibbs(
               X = X, y = y, a1=2, b1=1, u1=2, v1=1, 
               nsamples=1000, lambda_init=1, sigma2_init=1, verbose=100)
colMeans(output_PC$mBeta)


## ----eval=FALSE---------------------------------------------------------------
# effective_sample_size <- function(samples)
# {
#   # Using the spectral method
#   N <- length(samples)
# 
#   # Compute spectral density at zero using spectrum0.ar (uses AR smoothing)
#   spectral_density_zero <- spectrum0.ar(samples)$spec
# 
#   # Compute effective sample size using variance ratio
#   sample_variance <- var(samples)
#   tau <- spectral_density_zero / sample_variance  # Integrated autocorrelation time
#   ESS <- N / tau
#   if (ESS > N) {
#     ESS = N
#   }
# 
#   return(ESS)
# }

## ----generate-table-1, eval=FALSE---------------------------------------------
# # Load libraries
# library(BayesianLasso)
# # This code requires bayesreg
# 
# if (requireNamespace("monomvn", quietly = TRUE)) {
#   monomvn::monomvn(...)  # use the function safely
# } else {
#   message("monomvn package not installed; skipping example.")
# }
# if (requireNamespace("bayeslm", quietly = TRUE)) {
#   bayeslm::bayeslm(...)  # use the function safely
# } else {
#   message("bayeslm package not installed; skipping example.")
# }
# if (requireNamespace("rstan", quietly = TRUE)) {
#   rstan::rstan(...)  # use the function safely
# } else {
#   message("rstan package not installed; skipping example.")
# }
# if (requireNamespace("bayesreg", quietly = TRUE)) {
#   bayesreg::bayesreg(...)  # use the function safely
# } else {
#   message("bayesreg package not installed; skipping example.")
# }
# 
# 
# # Example: dataset_name <- "diabetes2"
# 
# if (dataset_name=="diabetes2")
# {
#   if (!requireNamespace("lars", quietly = TRUE)) {
#     install.packages("lars")
#   }
#   data(diabetes, package = "lars")
# 
#   y = diabetes$y
#   x = diabetes$x
#   inds = 1:ncol(x)
# 
#   # Normalizing and scaling the dataset by function normalize()
#   norm = normalize(y,x, scale = TRUE)
#   x = norm$mX
#   x <- model.matrix(~.^2, data=data.frame(x=x))[,-1]
#   y <- norm$vy
# 
# }
# 
# if (dataset_name=="Kakadu2")
# {
#   if (!requireNamespace("Ecdat", quietly = TRUE)) {
#     install.packages("Ecdat")
#   }
#   dat <- data("Kakadu", package = "Ecdat")
# 
# 
#   # Get y vector and X matrix
#   y <- as.vector(dat$income)
#   x <- dat[,c(2:21,23)]
# 
#   x <- model.matrix(~.^2,data=x)[,-1]
# }
# 
# # Make sure Crime.csv (or comData.Rdata) is downloaded manually before running this
# if (dataset_name=="Crime")
# {
#   rdata_path <- system.file("extdata", "comData.Rdata", package = "BayesianLasso")
#   load(rdata_path)
#   # Show only if file exists
#   crime_path <- "Crime.csv"
#   if (file.exists(crime_path)) {
#     crime_data <- read.csv(crime_path)
#   } else {
#     message("Please download 'communities.data' from the UCI Machine Learning Repository and convert to Crime.csv.")
#   }
# 
# 
#   mX <- t(t(X) %>% na.omit())
#   mX <- mX[,-which(colnames(X)%in%c("ownHousQrange","rentUpperQ"))]
#   varnames <- colnames(mX)
#   vy <- Y[,"murders"]
#   x <- mX
#   y <- vy
#   inds = 1:ncol(x)
# }
# 
# 
# # Set prior hyperparameter constants
# a1 = 1.0E-2  # Prior shape for sigma2
# b1 = 1.0E-2  # Prior scale for sigma2
# u1 = 1.0E-2  # Prior shape for lambda2
# v1 = 1.0E-2  # Prior scale for lambda2
# 
# # Initial values for lambda2 and sigma2
# lambda2_init  = 10
# lambda_init = sqrt(lambda2_init)
# sigma2_init = 1
# 
# # Number of samples to run the MCMC
# nburn = 1000
# nsamples = 5000
# inds_use = (nburn + 1):nsamples
# N = length(inds_use)
# 
# # To store elapsed time and results of the PC sampler
# vtime_val_PC = c()
# results_PC <- NULL  # to be initialized after the first run
# 
# # Running the modified PC sampler 5 times and taking the average of the results across runs.
# for (i in 1:5) {
#   time_val <- system.time({
#     res_PC <- Modified_PC_Gibbs(
#       X = x, y = y, a1, b1, u1, v1,
#       nsamples,
#       lambda_init = lambda_init,
#       sigma2_init = sigma2_init,
#       verbose = 1000
#     )
#   })[3]
# 
#   vtime_val_PC[i] <- time_val
# 
#   # Initialize accumulators after first run
#   if (is.null(results_PC)) {
#     results_PC <- list(
#       mBeta = res_PC$mBeta,
#       vsigma2 = res_PC$vsigma2,
#       vlambda2 = res_PC$vlambda2
#     )
#   } else {
#     results_PC$mBeta    <- results_PC$mBeta + res_PC$mBeta
#     results_PC$vsigma2  <- results_PC$vsigma2 + res_PC$vsigma2
#     results_PC$vlambda2 <- results_PC$vlambda2 + res_PC$vlambda2
#   }
# }
# 
# # Take averages
# mBeta = (res_PC$mBeta)/5
# vsigma2 = (res_PC$vsigma2)/5
# vlambda2 = (res_PC$vlambda2)/5
# time_val_PC = mean(vtime_val_PC)
# 
# # Compute effective sample sizes
#   vESS <- c()
#   for(j in 1:p) {
#     vESS[j] <- effective_sample_size(mBeta[inds_use,j])
#   }
#   Ef_PC = median(vESS)/time_val_PC
# 
#   ESS_sigma2_PC  = effective_sample_size(as.vector(vsigma2[inds_use]))
#   Ef_sigma2_PC = ESS_sigma2_PC/time_val_PC
# 
#   ESS_lambda2_PC  = effective_sample_size(as.vector(vlambda2[inds_use]))
#   Ef_lambda2_PC = ESS_lambda2_PC/time_val_PC
# 
#   stat_vec_PC = c(
#     100*median(vESS)/N,
#     Ef_PC,
#     100*ESS_sigma2_PC/N,
#     Ef_sigma2_PC,
#     100*ESS_lambda2_PC/N,
#     Ef_lambda2_PC,
#     time_val_PC)
# 
# name_vals = c("mix_beta", "eff_beta", "mix_sigma2", "eff_sigma2", "mix_lambda2", "eff_lambda2", "time")
# names(stat_vec_PC) = name_vals
# 
# 
# # To store elapsed time and results of the Hans sampler
# vtime_val_Hans = c()
# results_Hans <- NULL  # to be initialized after the first run
# 
# # Running the modified Hans sampler 5 times and taking the average of the results across runs.
# for (i in 1:5) {
#   time_val <- system.time({
#     res_Hans <- Modified_Hans_Gibbs(
#       X = x, y = y, a1, b1, u1, v1,
#       nsamples,
#       beta_init = as.vector(colMeans(mBeta)),
#       lambda_init = lambda_init,
#       sigma2_init = sigma2_init,
#       verbose = 1000
#     )
#   })[3]
# 
#   vtime_val_Hans[i] <- time_val
# 
#   # Initialize accumulators after first run
#   if (is.null(results_Hans)) {
#     results_Hans <- list(
#       mBeta = res_Hans$mBeta,
#       vsigma2 = res_Hans$vsigma2,
#       vlambda2 = res_Hans$vlambda2
#     )
#   } else {
#     results_Hans$mBeta    <- results_Hans$mBeta + res_Hans$mBeta
#     results_Hans$vsigma2  <- results_Hans$vsigma2 + res_Hans$vsigma2
#     results_Hans$vlambda2 <- results_Hans$vlambda2 + res_Hans$vlambda2
#   }
# }
# 
# # Take averages
# mBeta = (results_Hans$mBeta)/5
# vsigma2 = (results_Hans$vsigma2)/5
# vlambda2 = (results_Hans$vlambda2)/5
# time_val_Hans = mean(vtime_val_Hans)
# 
# # Compute effective sample sizes
#   vESS <- c()
#   for(j in 1:p) {
#     vESS[j] <- effective_sample_size(mBeta[inds_use,j])
#   }
#   Ef_Hans = median(vESS)/time_val_Hans
# 
#   ESS_sigma2_Hans  = effective_sample_size(as.vector(vsigma2[inds_use]))
#   Ef_sigma2_Hans = ESS_sigma2_Hans/time_val_Hans
# 
#   ESS_lambda2_Hans  = effective_sample_size(as.vector(vlambda2[inds_use]))
#   Ef_lambda2_Hans = ESS_lambda2_Hans/time_val_Hans
# 
#   stat_vec_Hans = c(
#     100*median(vESS)/N,
#     Ef_Hans,
#     100*ESS_sigma2_Hans/N,
#     Ef_sigma2_Hans,
#     100*ESS_lambda2_Hans/N,
#     Ef_lambda2_Hans,
#     time_val_Hans)
# 
# name_vals = c("mix_beta", "eff_beta", "mix_sigma2", "eff_sigma2", "mix_lambda2", "eff_lambda2", "time")
# names(stat_vec_Hans) = name_vals

Try the BayesianLasso package in your browser

Any scripts or data that you put into this service are public.

BayesianLasso documentation built on Aug. 8, 2025, 7:33 p.m.