Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(BayesianPlatformDesignTimeTrend)
## ----eval=FALSE---------------------------------------------------------------
#
# ntrials = 1000 # Number of trial replicates
# ns = seq(120, 600, 60) # Sequence of total number of accrued patients at each interim analysis
# null.reponse.prob = 0.4
# alt.response.prob = 0.6
#
# # We investigate the type I error rate for different time trend strength
# null.scenario = matrix(
# c(
# null.reponse.prob,
# null.reponse.prob,
# null.reponse.prob,
# null.reponse.prob
# ),
# nrow = 1,
# ncol = 4,
# byrow = T
# )
# alt.scenario = matrix(
# c(
# null.reponse.prob,
# alt.response.prob,
# alt.response.prob,
# null.reponse.prob
# ),
# nrow = 1,
# ncol = 4,
# byrow = T
# )
# model = "tlr" #logistic model
# max.ar = 0.85 #limit the allocation ratio for the control group (1-max.ar < r_control < max.ar)
# #------------Select the data generation randomisation methods-------
# rand.type = "Urn" # Urn design
# max.deviation = 3 # The recommended value for the tuning parameter in the Urn design
#
# # Require multiple cores for parallel running on HPC (Here is the number of cores i ask on Iridis 5 in University of Southampton)
# cl = 40
#
# # Set the model we want to use and the time trend effect for each model used.
# # Here the main model will be used twice for two different strength of time trend c(0,0,0,0) and c(1,1,1,1) to investigate how time trend affect the evaluation metrics in BAR setting.
# # Then the main + stage_continuous model which is the treatment effect + stage effect model will be applied for strength equal c(1,1,1,1) to investigate how the main + stage effect model improve the evaluation metrics.
# reg.inf = "main"
# trend.effect = c(0,0,0,0)
#
# result = {
#
# }
# OPC = {
#
# }
# K = dim(null.scenario)[2]
# cutoffindex = 1
# trendindex = 1
#
# cutoff.information=demo_Cutoffscreening.GP (
# ntrials = ntrials,
# # Number of trial replicates
# trial.fun = simulatetrial,
# # Call the main function
# power.type = "Conjunctive",
# response.probs.alt = alt.scenario,
# grid.inf = list(
# start.length = 15,
# grid.min = NULL,
# grid.max = NULL,
# confidence.level = 0.95,
# grid.length = 101,
# change.scale = FALSE,
# noise = T,
# errorrate = 0.1,
# simulationerror = 0.01,
# iter.max = 15,
# plotornot = FALSE),
# # Set up the cutoff grid for screening. The start grid has three elements. The extended grid has fifteen cutoff value under investigation
# input.info = list(
# response.probs = null.scenario[1,],
# #The scenario vector in this round
# ns = ns,
# # Sequence of total number of accrued patients at each interim analysis
# max.ar = max.ar,
# #limit the allocation ratio for the control group (1-max.ar < r_control < max.ar)
# rand.type = rand.type,
# # Which randomisation methods in data generation.
# max.deviation = max.deviation,
# # The recommended value for the tuning parameter in the Urn design
# model.inf = list(
# model = model,
# #Use which model?
# ibb.inf = list(
# #independent beta-binomial model which can be used only for no time trend simulation
# pi.star = 0.5,
# # beta prior mean
# pess = 2,
# # beta prior effective sample size
# betabinomialmodel = ibetabinomial.post # beta-binomial model for posterior estimation
# ),
# tlr.inf = list(
# beta0_prior_mu = 0,
# # Stan logistic model t prior location
# beta1_prior_mu = 0,
# # Stan logistic model t prior location
# beta0_prior_sigma = 2.5,
# # Stan logistic model t prior sigma
# beta1_prior_sigma = 2.5,
# # Stan logistic model t prior sigma
# beta0_df = 7,
# # Stan logistic model t prior degree of freedom
# beta1_df = 7,
# # Stan logistic model t prior degree of freedom
# reg.inf = reg.inf,
# # The model we want to use
# variable.inf = "Fixeffect" # Use fix effect logistic model
# )
# ),
# Stop.type = "Early-Pocock",
# # Use Pocock like early stopping boundary
# Boundary.type = "Asymmetric",
# # Use Symmetric boundary where cutoff value for efficacy boundary and futility boundary sum up to 1
# Random.inf = list(
# Fixratio = FALSE,
# # Do not use fix ratio allocation
# Fixratiocontrol = NA,
# # Do not use fix ratio allocation
# BARmethod = "Thall",
# # Use Thall's Bayesian adaptive randomisation approach
# Thall.tuning.inf = list(tuningparameter = "Unfixed", fixvalue = 1) # Specified the tunning parameter value for fixed tuning parameter
# ),
# trend.inf = list(
# trend.type = "linear",
# # Linear time trend pattern
# trend.effect = trend.effect,
# # Stength of time trend effect
# trend_add_or_multip = "mult" # Multiplicative time trend effect on response probability
# )
# ),
# cl = 2
# )
#
## -----------------------------------------------------------------------------
library(ggplot2)
# Details of grid
optimdata=optimdata_asy
# Recommend cutoff at each screening round
nextcutoff = optimdata$next.cutoff
nextcutoff$FWER=0.05
nextcutoff.predict = nextcutoff
colnames(nextcutoff.predict)=c("eff","fut","FWER")
prediction = optimdata$prediction
point.tested=optimdata$testeddata[,2:3]
tpIE=optimdata$testeddata[,1]
pow=optimdata$testeddata[,4]
point.tested=point.tested[1:sum(!is.na(tpIE)),]
tpIE=tpIE[1:sum(!is.na(tpIE))]
pow=pow[1:sum(!is.na(pow))]
cleandata=data.frame(FWER=tpIE,pow=pow,point.tested)
colnames(cleandata)[c(3,4)]=c("eff","fut")
GP.res = optimdata
xgrid.eff=optimdata$prediction$xgrid[,1]
xgrid.fut=optimdata$prediction$xgrid[,2]
grid.min=c(0.95,0)
grid.max=c(1,0.05)
library(grDevices)
library(RColorBrewer)
colormap=colorRampPalette(rev(brewer.pal(11,'Spectral')))(32)
target_line=0.1
df=data.frame(FWER=optimdata$prediction$yhat.t1E,eff=xgrid.eff,fut=xgrid.fut)
Contour.tIE<-ggplot(df,aes(eff,fut,z=FWER))+
scale_fill_gradientn(colors = colormap)+geom_tile(aes(fill=FWER))+
geom_contour(breaks=c(target_line, seq(min(df$FWER),max(df$FWER),by=(max(df$FWER)-min(df$FWER))/10)),color="black")+
geom_contour(breaks=target_line,color="white",linewidth=1.1)+
labs(title="Mean type I error rate (FWER)", x="Cutoff value for efficacy",y="Cutoff value for futility")
Contour.tIE=Contour.tIE+geom_point(data=cleandata,aes(eff,fut),color="black")+geom_point(data=nextcutoff.predict,aes(eff,fut),color="pink")
# Extract the contour data
contour_data_tIE <- ggplot_build(Contour.tIE)$data[[2]]
# Record the contour that has FWER equal to the target
contour_data_tIE_subset <- contour_data_tIE[contour_data_tIE$level == target_line, ]
# Order and split the data to ensure the plot is drawn correctly
contour_data_tIE_subset=contour_data_tIE_subset[order(contour_data_tIE_subset$piece,contour_data_tIE_subset$x),]
contour_data_tIE_subset_1=contour_data_tIE_subset[contour_data_tIE_subset$piece==1,]
contour_data_tIE_subset_2=contour_data_tIE_subset[contour_data_tIE_subset$piece==2,]
# To make sure the data frame is not empty
if (nrow(contour_data_tIE_subset_1) == 0){
contour_data_tIE_subset_1[1,]=(rep(NA,dim(contour_data_tIE_subset_1)[[2]]))
} else if (nrow(contour_data_tIE_subset_2) == 0){
contour_data_tIE_subset_2[1,]=(rep(NA,dim(contour_data_tIE_subset_2)[[2]]))
}
df=data.frame(sd=optimdata$prediction$sd.t1E,eff=xgrid.eff,fut=xgrid.fut)
Contour.sd<-ggplot(df,aes(eff,fut,z=sd))+
scale_fill_gradientn(colors = colormap)+geom_tile(aes(fill=sd))+
geom_contour(breaks=seq(min(df$sd),max(df$sd),by=(max(df$sd)-min(df$sd))/10),color="black")+labs(title="sd of contour", x="Cutoff value for efficacy",y="Cutoff value for futility")
Contour.sd=Contour.sd+
geom_path(data = contour_data_tIE_subset_1, aes(x,y,z=NA),color="white",linewidth=1.1)+geom_path(data = contour_data_tIE_subset_2, aes(x,y,z=NA),color="white",linewidth=1.1)+geom_point(data=cleandata,aes(eff,fut,z=NA),color="black")+geom_point(data=nextcutoff.predict,aes(eff,fut,z=NA),color="pink")
df=data.frame(Power=optimdata$prediction$yhat.pow,eff=xgrid.eff,fut=xgrid.fut)
Contour.pow<-ggplot(df,aes(eff,fut,z=Power))+
scale_fill_gradientn(colors = colormap)+geom_tile(aes(fill=Power))+
geom_contour(breaks=seq(min(df$Power),max(df$Power),by=(max(df$Power)-min(df$Power))/10),color="black")+labs(title="Mean power", x="Cutoff value for efficacy",y="Cutoff value for futility")
Contour.pow=Contour.pow+
geom_path(data = contour_data_tIE_subset_1, aes(x,y,z=NA),color="white",linewidth=1.1)+geom_path(data = contour_data_tIE_subset_2, aes(x,y,z=NA),color="white",linewidth=1.1)+
geom_point(data=cleandata,aes(eff,fut,z=NA),color="black")+geom_point(data=nextcutoff.predict,aes(eff,fut,z=NA),color="pink")
df=data.frame(NullESS=optimdata$prediction$yhat.ESS.null,eff=xgrid.eff,fut=xgrid.fut)
Contour.nullESS<-ggplot(df,aes(eff,fut,z=NullESS))+
scale_fill_gradientn(colors = colormap)+geom_tile(aes(fill=NullESS))+
geom_contour(breaks=seq(min(df$NullESS),max(df$NullESS),by=(max(df$NullESS)-min(df$NullESS))/10),color="black")+labs(title="Mean ESS under null", x="Cutoff value for efficacy",y="Cutoff value for futility")
Contour.nullESS=Contour.nullESS+
geom_path(data = contour_data_tIE_subset_1, aes(x,y,z=NA),color="white",linewidth=1.1)+geom_path(data = contour_data_tIE_subset_2, aes(x,y,z=NA),color="white",linewidth=1.1)+geom_point(data=cleandata,aes(eff,fut,z=NA),color="black")+geom_point(data=nextcutoff.predict,aes(eff,fut,z=NA),color="pink")
df=data.frame(AltESS=optimdata$prediction$yhat.ESS.alt,eff=xgrid.eff,fut=xgrid.fut)
Contour.altESS<-ggplot(df,aes(eff,fut,z=AltESS))+
scale_fill_gradientn(colors = colormap)+geom_tile(aes(fill=AltESS))+
geom_contour(breaks=seq(min(df$AltESS),max(df$AltESS),by=(max(df$AltESS)-min(df$AltESS))/10),color="black")+labs(title="Mean ESS under alternative", x="Cutoff value for efficacy",y="Cutoff value for futility")
Contour.altESS=Contour.altESS+
geom_path(data = contour_data_tIE_subset_1, aes(x,y,z=NA),color="white",linewidth=1.1)+geom_path(data = contour_data_tIE_subset_2, aes(x,y,z=NA),color="white",linewidth=1.1)+
geom_point(data=cleandata,aes(eff,fut,z=NA),color="black")+geom_point(data=nextcutoff.predict,aes(eff,fut,z=NA),color="pink")
## ----fig.align='center',fig.height=9,fig.width=7,warning=FALSE----------------
library(ggpubr)
ggarrange(Contour.tIE,Contour.pow,Contour.nullESS,Contour.altESS,Contour.sd,ncol = 2,nrow=3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.