AdaptpCR | Adapts pCR values |
AM | The Adaptive Metropolis Algorithm |
applySettingsDefault | Provides the default settings for the different samplers in... |
BayesianTools | BayesianTools |
betaFun | Helper function for calculating beta |
bridgesample | Calculates the marginal likelihood of a chain via bridge... |
calibrationTest | Simulation-based calibration tests |
checkBayesianSetup | Checks if an object is of class 'BayesianSetup' |
combineChains | Function to combine chains |
convertCoda | Convert coda::mcmc objects to BayesianTools::mcmcSampler |
correctThin | Checks if thin is consistent with nTotalSamples samples and... |
correlationPlot | Flexible function to create correlation density plots |
createBayesianSetup | Creates a standardized collection of prior, likelihood and... |
createBetaPrior | Convenience function to create a beta prior |
createLikelihood | Creates a standardized likelihood class#' |
createMcmcSamplerList | Convenience function to create an object of class... |
createPosterior | Creates a standardized posterior class |
createPrior | Creates a standardized prior class |
createPriorDensity | Fits a density function to a multivariate sample |
createProposalGenerator | Factory that creates a proposal generator |
createSmcSamplerList | Convenience function to create an object of class... |
createTruncatedNormalPrior | Convenience function to create a truncated normal prior |
createUniformPrior | Convenience function to create a simple uniform prior... |
DE | Differential-Evolution MCMC |
DEzs | Differential-Evolution MCMC zs |
DIC | Deviance information criterion |
DR | The Delayed Rejection Algorithm |
DRAM | The Delayed Rejection Adaptive Metropolis Algorithm |
DREAM | DREAM |
DREAMzs | DREAMzs |
factorMatrice | factorMatrice |
gelmanDiagnostics | Gelman Diagnostics |
generateCRvalues | Generates matrix of CR values based on pCR |
generateParallelExecuter | Factory to generate a parallel executor of an existing... |
generateTestDensityMultiNormal | Multivariate normal likelihood |
getBlock | Determine the parameters in the block update |
getBlockSettings | getblockSettings |
getCredibleIntervals | Calculate confidence region from an MCMC or similar sample |
getDharmaResiduals | Creates a DHARMa object |
getPanels | getPanels |
getPossibleSamplerTypes | Returns possible sampler types |
getPredictiveDistribution | Calculates predictive distribution based on the parameters |
getPredictiveIntervals | Calculates Bayesian credible (confidence) and predictive... |
getRmvnorm | Produce multivariate normal proposal |
getSample | Extracts the sample from a bayesianOutput |
getSetup | Function to get the setup from a bayesianOutput |
getVolume | Calculate posterior volume |
Gfun | Helper function for blow and hop moves |
GOF | Standard GOF metrics Startvalues for sampling with nrChains >... |
likelihoodAR1 | AR1 type likelihood function |
likelihoodIidNormal | Normal / Gaussian Likelihood function |
logSumExp | Funktion to compute log(sum(exp(x)) |
M | The Metropolis Algorithm |
makeObjectClassCodaMCMC | Helper function to change an object to a coda mcmc class, |
MAP | calculates the Maxiumum APosteriori value (MAP) |
marginalLikelihood | Calcluated the marginal likelihood from a set of MCMC samples |
marginalPlot | Plot MCMC marginals |
marginalPlotDensity | Plot marginals as densities |
marginalPlotViolin | Plot marginals as violin plot |
mcmcMultipleChains | Run multiple chains |
mergeChains | Merge Chains |
Metropolis | Creates a Metropolis-type MCMC with options for covariance... |
metropolisRatio | Function to calculate the metropolis ratio |
package-deprecated | Allows to mix a given parameter vector with a default... |
plotDiagnostic | Diagnostic Plot |
plotSensitivity | Performs a one-factor-at-a-time sensitivity analysis for the... |
plotTimeSeries | Plots a time series, with the option to include confidence... |
plotTimeSeriesResiduals | Plots residuals of a time series |
plotTimeSeriesResults | Creates a time series plot typical for an MCMC / SMC fit |
propFun | Helper function to create proposal |
rescale | Rescale |
runMCMC | Main wrapper function to start MCMCs, particle MCMCs and SMCs |
sampleEquallySpaced | Gets n equally spaced samples (rows) from a matrix or vector |
sampleMetropolis | gets samples while adopting the MCMC proposal generator |
scaleMatrix | Function to scale matrices |
setupStartProposal | Help function to find starvalues and proposalGenerator... |
smcSampler | SMC sampler |
stopParallel | Function to close cluster in BayesianSetup |
sumSquare | Helper function for sum of x*x |
testDensityBanana | Banana-shaped density function |
testDensityGelmanMeng | GelmanMeng test function |
testDensityInfinity | Test function infinity ragged |
testDensityMultiNormal | 3d Mutivariate Normal likelihood |
testDensityNormal | Normal likelihood |
testLinearModel | Fake model, returns a ax + b linear response to 2-param... |
thinMatrix | Function to thin matrices |
tracePlot | Trace plot for MCMC class |
Twalk | T-walk MCMC |
TwalkMove | Wrapper for step function |
Twalksteps | Main function that is executing and evaluating the moves |
updateGroups | Determine the groups of correlated parameters |
updateProposalGenerator | To update settings of an existing proposal genenerator |
VSEM | Very simple ecosystem model |
vsemC | C version of the VSEM model |
VSEMcreateLikelihood | Create an example dataset, and from that a likelihood or... |
VSEMcreatePAR | Create a random radiation (PAR) time series |
VSEMgetDefaults | returns the default values for the VSEM |
WAIC | calculates the WAIC |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.