View source: R/mcmcFrancesco.R
AM | R Documentation |
The Adaptive Metropolis Algorithm (Haario et al. 2001)
AM( startValue = NULL, iterations = 10000, nBI = 0, parmin = NULL, parmax = NULL, FUN, f = 1, eps = 0 )
startValue |
vector with the start values for the algorithm. Can be NULL if FUN is of class BayesianSetup. In this case startValues are sampled from the prior. |
iterations |
iterations to run |
nBI |
number of burnin |
parmin |
minimum values for the parameter vector or NULL if FUN is of class BayesianSetup |
parmax |
maximum values for the parameter vector or NULL if FUN is of class BayesianSetup |
FUN |
function to be sampled from or object of class bayesianSetup |
f |
scaling factor |
eps |
small number to avoid singularity |
Francesco Minunno
Haario, Heikki, Eero Saksman, and Johanna Tamminen. "An adaptive Metropolis algorithm." Bernoulli (2001): 223-242.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.