PseudoR2: Pseudo-R2 Statistics

Description Usage Arguments Details Value Note Author(s) References See Also Examples

View source: R/PseudoR2.R

Description

Returns various pseudo-R^2 statistics (as well as Akaike's [corrected] information criterion) from a glm object. Should mimic those returend from a logistic/probit regression in Stata when using fitstat

Usage

1
PseudoR2(glmModel)

Arguments

glmModel

Object from a glm model, preferably logsitstic regression,
e.g., family=binomial(link="logit")

Details

None

Value

McFadden

McFadden Pseudo-R^2

Adj.McFadden

McFadden Adjusted Pseudo-R^2

Cox.Snell

Cox and Snell Pseudo-R^2 (also known as ML Pseudo-R^2)

Nagelkerke

Nagelkerke PseudoR^2

McKelvey.Zavoina

McKelvey and Zavoina Pseudo-R^2

Effron

Effron Pseudo-R^2

Count

Count Pseudo-R^2, number of correctly classified cases, uisng \hat{π}> .50 as the cutoff

Adj.Count

Adjusted Count Pseudo-R^2

AIC

Akaike's information criterion

Corrected.AIC

Corrected Akaike information criterion

Note

There are many documented problems with using pseudo-R2 values (e.g., Long, 1997). Use the values judiciously.

Author(s)

A. Alexander Beaujean

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York: Springer-Verlag.

Efron, B. (1978). Regression and ANOVA with zero-one data: Measures of residual variation. Journal of the American Statistical Association, 73(361), 113–121.

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). Hoboke, NJ: Wiley.

Long, J. S.(1997). Regression models for categorical and limited dependent variables. Thousand Oaks, CA:Sage.

McFadden, D. (1979). Quantitative methods for analysing travel behavior of individuals: Some recent developments. In D. A. Hensher & P. R. Stopher (Eds.), Behavioural travel modelling (pp. 279–318). London: Croom Helm.

McKelvey, R. D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. The Journal of Mathematical Sociology, 4(1), 103–120

Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692.

See Also

glm

Examples

1
2
3
4
5
data(MLBOffense2011)
MLBOffense2011$NL<-ifelse(MLBOffense2011$Lg=="NL", 1,0)
#predict MLB league membership from RBI and slugging
model1<-glm(NL~RBI + SLG, data=MLBOffense2011, family=binomial(link="logit"))  
PseudoR2(model1)

Example output

        McFadden     Adj.McFadden        Cox.Snell       Nagelkerke 
       0.1928445        0.1830248        0.2041590        0.2941805 
McKelvey.Zavoina           Effron            Count        Adj.Count 
       0.3345218        0.1928930        0.7209302        0.0000000 
             AIC    Corrected.AIC 
     663.5830719      663.6181596 

BaylorEdPsych documentation built on May 1, 2019, 8:21 p.m.