Description Usage Arguments Details Value Note Author(s) References See Also Examples
Returns various pseudo-R^2 statistics (as well as Akaike's [corrected] information criterion) from a glm object. Should mimic those returend from a logistic/probit regression in Stata when using fitstat
1 | PseudoR2(glmModel)
|
glmModel |
Object from a glm model, preferably logsitstic regression, |
None
McFadden |
McFadden Pseudo-R^2 |
Adj.McFadden |
McFadden Adjusted Pseudo-R^2 |
Cox.Snell |
Cox and Snell Pseudo-R^2 (also known as ML Pseudo-R^2) |
Nagelkerke |
Nagelkerke PseudoR^2 |
McKelvey.Zavoina |
McKelvey and Zavoina Pseudo-R^2 |
Effron |
Effron Pseudo-R^2 |
Count |
Count Pseudo-R^2, number of correctly classified cases, uisng \hat{π}> .50 as the cutoff |
Adj.Count |
Adjusted Count Pseudo-R^2 |
AIC |
Akaike's information criterion |
Corrected.AIC |
Corrected Akaike information criterion |
There are many documented problems with using pseudo-R2 values (e.g., Long, 1997). Use the values judiciously.
A. Alexander Beaujean
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York: Springer-Verlag.
Efron, B. (1978). Regression and ANOVA with zero-one data: Measures of residual variation. Journal of the American Statistical Association, 73(361), 113–121.
Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). Hoboke, NJ: Wiley.
Long, J. S.(1997). Regression models for categorical and limited dependent variables. Thousand Oaks, CA:Sage.
McFadden, D. (1979). Quantitative methods for analysing travel behavior of individuals: Some recent developments. In D. A. Hensher & P. R. Stopher (Eds.), Behavioural travel modelling (pp. 279–318). London: Croom Helm.
McKelvey, R. D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. The Journal of Mathematical Sociology, 4(1), 103–120
Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692.
glm
1 2 3 4 5 | data(MLBOffense2011)
MLBOffense2011$NL<-ifelse(MLBOffense2011$Lg=="NL", 1,0)
#predict MLB league membership from RBI and slugging
model1<-glm(NL~RBI + SLG, data=MLBOffense2011, family=binomial(link="logit"))
PseudoR2(model1)
|
McFadden Adj.McFadden Cox.Snell Nagelkerke
0.1928445 0.1830248 0.2041590 0.2941805
McKelvey.Zavoina Effron Count Adj.Count
0.3345218 0.1928930 0.7209302 0.0000000
AIC Corrected.AIC
663.5830719 663.6181596
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.