Nothing
# This function was written by James B Dorey on 8th November 2022 to create a .summary column and
# replace the bdc_summary_col function which fails with NA values
#' Create or update the .summary flag column
#'
#' Using all flag columns (column names starting with "."), this function either creates or updates
#' the .summary flag column which is FALSE when ANY of the flag columns are FALSE. Columns can be excluded
#' and removed after creating the .summary column. Additionally, the occurrence dataset
#' can be filtered to only those where .summary = TRUE at the end of the function.
#'
#' @param data A data frame or tibble. Occurrence records to use as input.
#' @param dontFilterThese A character vector of flag columns to be ignored in the creation or updating
#' of the .summary column. Cannot be specified with onlyFilterThese.
#' @param onlyFilterThese A character vector. The inverse of dontFilterThese, where columns identified
#' here will be filtered and no others. Cannot be specified with dontFilterThese.
#' @param removeFilterColumns Logical. If TRUE all columns starting with "." will be removed in the
#' output data. This only makes sense to use when filterClean = TRUE. Default = FALSE.
#' @param filterClean Logical. If TRUE, the data will be filtered to only those occurrence where .summary
#' = TRUE (i.e., completely clean according to the used flag columns). Default = FALSE.
#'
#' @return Returns a data frame or tibble of the input data but modified based on the above parameters.
#' @export
#'
#' @importFrom dplyr %>%
#'
#'
#' @examples
#' # Read in example data
#' data(beesFlagged)
#'
#' # To only update the .summary column
#' beesFlagged_out <- summaryFun(
#' data = beesFlagged,
#' dontFilterThese = c(".gridSummary", ".lonFlag", ".latFlag", ".uncer_terms", ".unLicensed"),
#' removeFilterColumns = FALSE,
#' filterClean = FALSE)
#' # View output
#' table(beesFlagged_out$.summary, useNA = "always")
#'
#' # Now filter to only the clean data and remove the flag columns
#' beesFlagged_out <- summaryFun(
#' data = BeeBDC::beesFlagged,
#' dontFilterThese = c(".gridSummary", ".lonFlag", ".latFlag", ".uncer_terms", ".unLicensed"),
#' removeFilterColumns = TRUE,
#' filterClean = TRUE)
#' # View output
#' table(beesFlagged_out$.summary, useNA = "always")
#'
#'
#'
summaryFun <- function(
data = NULL,
dontFilterThese = NULL,
onlyFilterThese = NULL,
removeFilterColumns = FALSE,
filterClean = FALSE){
# locally bind variables to the function
. <- rowSum <- .summaryNew <- .summary <- NULL
#### 0.0 Prep ####
if(is.null(data)){
stop("You must provide a dataset in the 'data' argument.")
}
if(!is.null(dontFilterThese) & !is.null(onlyFilterThese)){
stop("Please only choose dontFilterThese OR onlyFilterThese.")
}
##### 0.1 onlyFilter to dontFilter ####
# In order to use onlyFilterThese, simply transform it to dontFilterThese
if(!is.null(onlyFilterThese)){
dontFilterThese <- data %>%
# Select all columns starting with "."
dplyr::select(tidyselect::starts_with(".")) %>%
colnames(.) %>%
setdiff(., onlyFilterThese)
}
#### 1.0 Generate .summary column ####
##### 1.1 dontFilterThese present ####
# User output
if(!is.null(dontFilterThese)){
writeLines(paste0(" - We will NOT flag the following columns. However, they will remain",
" in the data file.\n",
paste(dontFilterThese, collapse = ", ") ))
# Run function
dataOut <-
data %>%
# Which columns NOT to filter
dplyr::select(!tidyselect::any_of(dontFilterThese)) %>%
# Update .summary column
# Select all columns starting with "."
dplyr::select(tidyselect::starts_with(".")) %>%
# Delete the summary column if it's there
dplyr::select(!tidyselect::starts_with(".summary")) %>%
# Make FALSE == 1 and TRUE == 0
dplyr::mutate_if(is.logical, ~abs(as.numeric(.) - 1)) %>%
# IF rowSum > 0 then there is at least one flag
dplyr::mutate(rowSum = base::rowSums(., na.rm = TRUE)) %>%
# Add the .summary column
dplyr::mutate(.summaryNew = dplyr::if_else(rowSum > 0,
FALSE, TRUE)) %>%
dplyr::select(.summaryNew) %>%
dplyr::bind_cols(data, .) %>%
dplyr::mutate(.summary = .summaryNew) %>% dplyr::select(!.summaryNew)
}
##### 1.2 dontFilterThese NULL ####
if(is.null(dontFilterThese)){
writeLines(paste0(" - We will flag all columns starting with '.'"))
# Run function
dataOut <-
data %>%
# Update .summary column
# Select all columns starting with "."
dplyr::select(tidyselect::starts_with(".")) %>%
# Delete the summary column if it's there
dplyr::select(!tidyselect::starts_with(".summary")) %>%
# Make FALSE == 1 and TRUE == 0
dplyr::mutate_if(is.logical, ~abs(as.numeric(.) - 1)) %>%
# IF rowSum > 0 then there is at least one flag
dplyr::mutate(rowSum = rowSums(., na.rm = TRUE)) %>%
# Add the .summary column
dplyr::mutate(.summaryNew = dplyr::if_else(rowSum > 0,
FALSE, TRUE)) %>%
dplyr::select(.summaryNew) %>%
dplyr::bind_cols(data, .) %>%
dplyr::mutate(.summary = .summaryNew) %>% dplyr::select(!.summaryNew)
}
##### 1.3 User message ####
message(paste(" - summaryFun:\nFlagged",
format(sum(dataOut$.summary == FALSE, na.rm = TRUE), big.mark = ","),
"\n ",
"The .summary column was added to the database.",
sep = " "))
#### 2.0 Optional extras ####
##### 2.1 Filter for clean ####
# RFilter for only clean records here if user specifies
if(filterClean == TRUE){
dataOut <- dataOut %>%
# FILTER HERE
dplyr::filter(.summary == TRUE)
message(paste(" - REMOVED all occurrences that were FALSE for the 'summary' column."))
}
##### 2.2 Remove filtering columns ####
# Remove filtering columns if user specifies
if(removeFilterColumns == TRUE){
dataOut <- dataOut %>%
dplyr::select(!tidyselect::starts_with("."))
}
#### 3.0 Output ####
return(dataOut)
} # End function
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.