Description Usage Arguments Value Author(s) See Also Examples
Does the computation for Bland Altman plots. This will usually be called from
graphic functions like bland.altman.plot
but will be usefull for
customized plot (see examples for color coded BA plot). Offers symmetric
confidence intervalls for bias and upper and lower limits.
1 | bland.altman.stats(group1, group2, two = 1.96, mode = 1, conf.int = 0.95)
|
group1 |
vector of numerics to be compared to group2 |
group2 |
vector of numerics to be compared to group1 |
two |
numeric defines how many standard deviations from mean are to be computed, defaults to 1.96 as this gives proper 95 percent CI. However, in the original publication a factor of 2 is used. |
mode |
if 1 then difference group1 minus group2 is used, if 2 then group2 minus group1 is used. Defaults to 1. |
conf.int |
usefull |
means
vector of means, i. e. data for the x axis
diffs
vector of differences, i. e. data for the y axis
groups
data.frame containing pairwise complete cases of group1 and
group2. NAs are removed.
based.on
count of pairwise complete cases in groups
lower.limit
lower limit for BA plot
mean.diffs
mean of differences, also called 'bias'
upper.limit
upper limit for BA plot
lines
vector containing y values where to draw horizontal
lines, i. e. mean of differences minus "two" standard deviations, mean of
differences and mean of differences plus "two" standard deviations (i. e.
c(lower.limit, mean.diffs, upper.limit
). This is convenient for
printing.
CI.lines
vector of confidence intervalls for the values of
lines (based on the assumption of normal distribution of differences
diffs
).
two
the argument 'two'
critical.diff
critical difference, i. e. 'two' times standard
deviation of differences, equals half the difference of lower.limit and
upper.limit
Bernhard Lehnert <bernhard.lehnert@uni-greifswald.de>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # simple calculation of stats:
a <- rnorm(20)
b <- jitter(a)
print(bland.altman.stats(a, b))
print(bland.altman.stats(a, b)$critical.diff)
# drawing Bland-Altman-Plot with color coding sex:
example.data <- data.frame(sex = gl(2,6,labels=c("f","m")),
m1 = c(16,10,14,18,16,15,18,19,14,11,11,17),
m2 = c(18, 9,15,19,19,13,19,20,14,11,13,17))
ba <- bland.altman.stats(example.data$m1, example.data$m2)
plot(ba$means, ba$diffs, col=example.data$sex, ylim=c(-4,4))
abline(h=ba$lines, lty=2)
# compute 95%-CIs for the bias and upper and lower limits of PEFR data as
# in Bland&Altman 1986
bland.altman.stats(bland.altman.PEFR[,1],bland.altman.PEFR[,3])$CI.lines
# apparently wrong results? CAVE: Bland&Altman are using two=2, thus
bland.altman.stats(bland.altman.PEFR[,1],bland.altman.PEFR[,3], two=2)$CI.lines
|
$means
[1] -0.93530023 1.34436708 0.56338965 0.06611654 0.04062908 -0.50435840
[7] -0.33016523 0.20616244 1.08343743 -0.45071411 0.42979581 -0.57739308
[13] 0.67529092 0.06307145 -1.18608133 -0.51240798 0.08651163 -0.53841372
[19] 0.22641293 0.36333650
$diffs
[1] 3.995970e-04 3.357877e-04 -4.015592e-04 -2.767952e-04 1.376904e-04
[6] 1.530367e-04 -4.505990e-04 1.508949e-05 5.684838e-04 -4.992454e-05
[11] -3.293403e-04 4.366084e-04 -1.534298e-04 1.053347e-04 -6.994188e-05
[16] -1.538641e-04 4.072881e-04 -2.152407e-04 2.544490e-04 4.662167e-05
$groups
group1 group2
1 -0.93510043 -0.93550003
2 1.34453497 1.34419919
3 0.56318887 0.56359043
4 0.06597814 0.06625494
5 0.04069793 0.04056024
6 -0.50428188 -0.50443492
7 -0.33039053 -0.32993993
8 0.20616998 0.20615489
9 1.08372167 1.08315319
10 -0.45073908 -0.45068915
11 0.42963114 0.42996048
12 -0.57717477 -0.57761138
13 0.67521420 0.67536763
14 0.06312412 0.06301879
15 -1.18611631 -1.18604636
16 -0.51248491 -0.51233104
17 0.08671528 0.08630799
18 -0.53852134 -0.53830610
19 0.22654016 0.22628571
20 0.36335981 0.36331319
$based.on
[1] 20
$lower.limit
[1] -0.0005473137
$mean.diffs
[1] 3.796462e-05
$upper.limit
[1] 0.000623243
$lines
lower.limit mean.diffs upper.limit
-5.473137e-04 3.796462e-05 6.232430e-04
$CI.lines
lower.limit.ci.lower lower.limit.ci.upper mean.diff.ci.lower
-0.0007893755 -0.0003052519 -0.0001017898
mean.diff.ci.upper upper.limit.ci.lower upper.limit.ci.upper
0.0001777191 0.0003811812 0.0008653047
$two
[1] 1.96
$critical.diff
[1] 0.0005852783
[1] 0.0005852783
lower.limit.ci.lower lower.limit.ci.upper mean.diff.ci.lower
-112.61914 -43.57547 -22.04884
mean.diff.ci.upper upper.limit.ci.lower upper.limit.ci.upper
17.81354 39.34017 108.38384
lower.limit.ci.lower lower.limit.ci.upper mean.diff.ci.lower
-114.16974 -45.12607 -22.04884
mean.diff.ci.upper upper.limit.ci.lower upper.limit.ci.upper
17.81354 40.89078 109.93445
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.