R/cec.params.R

Defines functions try.chol create.cec.params.for.models resolve.type

#' @title Clustering Type to Int
#' 
#' @description Internal function to map clustering types provided as character
#'  strings to integer. 
#' 
#' @noRd
resolve.type <- function(type) {
    types <- c("covariance", "fixedr", "spherical", "diagonal", "eigenvalues", 
               "mean", "all")
    match.arg(type, types)
}


#' @title Parameters for C
#' 
#' @description Internal function to prepare the clustering parameters for the 
#'  C function. 
#' 
#' @noRd
create.cec.params.for.models <- function(k, n, type.arg, param.arg) {
    models <- replicate(k, list())
    types <- vapply(type.arg, resolve.type, "")
    params <- NULL
    
    if (methods::hasArg(param.arg)) {
        params <- param.arg
    }
    
    if (length(types) == 1) {
        types <- rep(types, k)
        
        if (methods::hasArg(param.arg)) {
            params <- rep(list(unlist(param.arg)), k)
            params <- params[!params %in% list(NULL, NA)]
        }
    }

    if (k != length(types)) {
        stop("Illegal argument: illegal length of 'type' vector.")
    }

    idx <- 0
    
    for (i in 1:length(types)) {
        type <- types[i]
        models[[i]]$type <- type
        models[[i]]$params <- list()
        
        if (type == resolve.type("covariance")) {
            idx <- idx + 1

            if (length(params) < idx) {
                stop("Illegal argument: illegal 'param' length.")
            }

            cov <- params[[idx]]
            
            if (!is.array(cov)) {
                stop("Illegal argument: illegal parameter for 'covariance' type.")    
            }
            
            if (ncol(cov) != n) {
                stop("Illegal argument: illegal parameter for 'covariance' type.")
            }
            
            if (nrow(cov) != n) {
                stop("Illegal argument: illegal parameter for 'covariance' type.")
            }
            
            if (!try.chol(cov)) 
                stop("Illegal argument: illegal parameter for 'covariance' type - matrix must be positive-definite.")
            
            cov.inv <- solve(cov)
            models[[i]]$params <- list(cov = cov, cov.inv = cov.inv)
        } else if (type == resolve.type("fixed")) {
            idx <- idx + 1
            
            if (length(params) < idx) {
                stop("Illegal argument: illegal 'param' length.")
            }
            
            r <- params[[idx]]
            
            if (length(r) != 1) {
                stop("Illegal argument: illegal parameter for 'fixedr' type.")
            }
            
            if (!is.numeric(r)) {
                stop("Illegal argument: illegal parameter for 'fixedr' type.")
            }
            
            if (!r > 0) {
                stop("Illegal argument: illegal parameter for 'fixedr' type.")
            }
            
            models[[i]]$params <- list(r = r)
        } else if (type == resolve.type("eigenvalues")) {
            idx <- idx + 1
            
            if (length(params) < idx) {
                stop("Illegal argument: illegal 'param' length.")    
            }
            
            evals <- params[[idx]]
            
            if (length(evals) != n) {
                stop("Illegal argument: illegal parameter for 'eigenvalues' type: invalid length.")
            }
            
            if (!all(evals != 0)) {
                stop("Illegal argument: illegal parameter for 'eigenvalues' type: all values must be greater than 0.")
            }
            
            models[[i]]$params <- list(eigenvalues = sort(evals))
        } else if (type == resolve.type("mean")) {
            idx <- idx + 1
            
            if (length(params) < idx) {
                stop("Illegal argument: illegal 'param' length.")
            }
            
            mean <- params[[idx]]
            
            if (length(mean) != n) {
                stop("Illegal argument: illegal parameter for 'mean' type: invalid length.")
            }
            
            models[[i]]$params <- list(mean = mean)
        }
    }
    models
}


#' @title Cholesky Decomposition Try
#' 
#' @description Internal function to handle Cholesky decomposition potential 
#'  erroring. 
#' 
#' @noRd
try.chol <- function(mat) {
    ifelse("try-error" %in% class(try(chol(mat), silent = TRUE)), FALSE, TRUE)
}

Try the CEC package in your browser

Any scripts or data that you put into this service are public.

CEC documentation built on Oct. 11, 2024, 1:08 a.m.