View source: R/CGGP_gneglogpost.R
| CGGP_internal_gneglogpost | R Documentation | 
Gradient of negative log likelihood posterior
CGGP_internal_gneglogpost(
  theta,
  CGGP,
  y,
  ...,
  return_lik = FALSE,
  ys = NULL,
  Xs = NULL,
  HandlingSuppData = "Correct"
)
theta | 
 Log of correlation parameters  | 
CGGP | 
 CGGP object  | 
y | 
 CGGP$design measured values  | 
... | 
 Forces you to name remaining arguments  | 
return_lik | 
 If yes, it returns a list with lik and glik  | 
ys | 
 Supplementary output data  | 
Xs | 
 Supplementary input data  | 
HandlingSuppData | 
 How should supplementary data be handled? * Correct: full likelihood with grid and supplemental data * Only: only use supplemental data * Ignore: ignore supplemental data  | 
Vector for gradient of likelihood w.r.t. x (theta)
cg <- CGGPcreate(d=3, batchsize=20)
Y <- apply(cg$design, 1, function(x){x[1]+x[2]^2})
cg <- CGGPfit(cg, Y)
CGGP_internal_gneglogpost(cg$thetaMAP, CGGP=cg, y=cg$y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.